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Abstract. In Popławski and Kaczmarczyk (2013) a method 
referred to as UEK was presented and used as a tool in the 
analysis of sustainable rural development. The purpose of this 
paper is to demonstrate the methodological inappropriateness 
of that method. In the linear regression model, the matrix of 
explanatory variables can have either less than full or full col-
umn rank. While all regression parameters are non-estimable 
in the first case, the well-known and widely used ordinary 
least squares method can be applied in the second one.
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INTRODUCTION

The formula referred to as UEK was presented for the 
first time by Kaczmarczyk (2012) in the context of com-
pany valuation. Later, it was used as an efficient tool 
for public debt management (Kawa and Kaczmarczyk, 
2012). It was also applied in a quantitative descrip-
tion of sustainable development in the Świętokrzyskie 
voivodeship (Popławski and Kaczmarczyk, 2013). In 
Popławski and Kaczmarczyk (2013) the UEK method 
is used if the matrix of explanatory variables has less 
than full column rank. To overcome the problem of the 

resulting singularity of the matrix of coefficients of the 
system of normal equations, the authors use the Moore–
Penrose pseudoinverse (MP pseudoinverse). However, 
in this way they obtain a biased estimator of non-estima-
ble parameters; therefore, all estimates are useless, and 
so are all conclusions pertaining to sustainable develop-
ment of the area under investigation.

This paper will demonstrate that the estimator of lin-
ear regression coefficients based on the MP pseudoin-
verse of the singular matrix of coefficients of the system 
of normal equations does not have good properties. The 
Bayesian approach will be employed to show that when 
the matrix of values of explanatory variables has less 
than full column rank, it is methodologically invalid to 
use the UEK in the estimation of all regression coef-
ficients. It is impossible to make inferences about the 
vector of regression coefficients based only on the infor-
mation supplied by research data. 

In the next part of this paper, the UEK method will 
be put into the framework of a linear regression model. 
Then, the properties of the estimator based on the MP 
pseudoinverse will be discussed. The flaws of the UEK 
method will be illustrated by the example considered 
in (Popławski and Kaczmarczyk, 2013) which refers 
to sustainable rural development in the Świętokrzyskie 
voivodeship. The paper ends with a brief conclusion.
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The UEK method in the linear regression 
framework
Let the stochastic version of the model UE = K discussed 
in Kawa and Kaczmarczyk (2012) and in Popławski and 
Kaczmarczyk (2013) be formulated by adding to its left 
hand side a vector of random disturbances ε, represent-
ing the impact of unknown and unobservable factors on 
the explained variable K. The following linear regres-
sion model is obtained1:

 K = UE + ε  (1)

where:
K – is an n × 1 vector of the dependent variable 

observations
U – is an n × m matrix of values of explanatory 

variables
E – is an m × 1 vector of unknown regression 

coefficients
ε = (ε1, ε1, ..., εn)′ is an n × 1 vector of random 

disturbances.
Moreover, it is assumed that E(ε) = 0, E(εεT) = σ2In, 

where σ2 > 0.
Popławski and Kaczmarczyk (2013) propose to use 

the MP pseudoinverse to estimate the unknown param-
eters of the vector E. They obtain the following formula:

 Ê+ = U+K (2)

where U+ is the Moore-Penrose pseudoinverse of the 
matrix U.

Note that if the matrix U has full column rank 
(r(U) = m ≥ n), then the matrix UTU is non-singular (i.e. 
r(UTU) = m)2, and then: 

 Ê+ = U+K = (UTU)-1UTK (3)

and as a consequence, the UEK method coincides with 
the ordinary least squares (OLS) method. Under the ad-
ditional assumption that U is a non-random matrix, the 
estimator Ê+ is the best unbiased linear estimator of the 
vector E (see Goldberger, 1964).

If the matrix U has less than full column rank, then 
the matrix UTU is singular, and therefore:

 Ê+ = (UTU)+UTK (4)

1 The notation is the same as that used by the authors cited.
2 Because r(ATA) = r(A) for any matrix A (see Harville, 2008, 

p. 79).

Under the assumption that U is a non-random ma-
trix, the bias of the estimator Ê+ is equal to (U+U – I)E  
(Pajor, 2017). Thus, when U+U ≠ Im, as assumed in 
Popławski and Kaczmarczyk (2013) and in Kawa and 
Kaczmarczyk (2012)3, the bias of estimator Ê+ may dif-
fer from zero. In other words, if matrix UTU is singular, 
the MP pseudoinverse does not yield an unbiased estima-
tor of the vector E. Apart from this fact, the vector E is 
then not estimable4 without additional information from 
outside the dataset. It is impossible to make inferences 
about the vector of regression coefficients based only 
on the information supplied by research data. Attention 
should be therefore focused not on the vector E but on 
the estimable function of E. For example, a linear func-
tion qTE of parameters in E is estimable if and only if qT 
is a linear function of the rows of U, i.e. a vector v exists 
such that qT = vTU (Searle, 1966; Albert, 1972). Indeed, 
if qT = vTU, then qTÊ+ is an unbiased estimator of qTE 
due to the fact that UÊ+ is an unbiased estimator of UE 
(Pajor, 2017): E(qTÊ+) = qTE. This fact is invariant to 
which solution of UTUE = UTK is used (Searle, 1966). 

The prediction problem
Since UÊ+ is an unbiased estimator of UE, the estimator 
Ê+ can be used in forecasting to find out when the values 
of explanatory variables used in prediction (contained 
in a 1 × m vector U͂) satisfy the following condition:  
U͂ = wTU for a given n × 1 vector w ∈ Rn.5 This means 
that vector U͂ must be a linear combination of the rows 
of the matrix U. Then the expected value of the predic-
tion error equals zero because:

E(K͂ – Kn+1) = E(U͂Ê+ – U͂E – εn+1) =  
= U͂E(Ê+ – E) = U͂(U+U – I)E =  

 = wT(UU+U – U)E = 0 
(5)

3 If the columns of the matrix U are linearly independent, then 
U+U = Im; and if the rows of the matrix U are linearly independ-
ent, then UU+ = In.

4 A function f(E) is said to be estimable if a vector z exists 
such that E(zTK) = f(E) (Searle, 1966).

5 In these considerations, the matrices U͂ and U are given. The 
equation U͂ = wTU has one or more solutions (for w) if and only 
if r([UT : U͂T]) = r(UT). If r([UT : U͂T]) = r(UT) = n then the equation  
U͂ = wTU has a unique solution, namely wT = U͂U+. If r([UT : U͂T]) 
< n then the equation U͂ = wTU has an infinite number of solu-
tions (only one of them can be expressed as wT = U͂U+, Harville, 
2008, p. 144).
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where Kn+1 = U͂E + εn+1 is the “future” value of the 
dependent variable; K͂ = U͂Ê+ is the predictor of Kn+1; 
εn+1 is the random disturbance such that E(εn+1) = 0; 
E(ε2

n+1) = σ2; and E(εiεn+1) = 0 for i = 1, …, n.
The variance of the prediction error is:

Var(K͂ – Kn+1) = σ2[U͂(UTU)+U͂T + I1] = 
σ2[wTU(UTU)+UTw + I1] =  

 σ2I1 + σ2wTUU+w 
(6)

It consists of two components: the first one refers to 
the “future” disturbance, εn+1, and the second one to the 
estimation error of UE (it is easy to show that Var(U͂Ê+) 
= σ2UU+). If the rows of the matrix U are linearly inde-
pendent, then UU+ = In and, as expected, K͂ = wTK. More-
over, Var(U͂Ê+) = σ2In, and Var(K͂ – Kn+1) = σ2[wTw + 1].

It is clear that the variance of the prediction error de-
pends on σ2 and increases with the increase in the length 
of the vector w. Unfortunately, in the case of a perfect 
in-sample fit (i.e. when K and UÊ+ are equal to each 
other), the parameter σ2 cannot be evaluated, and con-
sequently the confidence interval cannot be determined 
for this forecast. Moreover, situations where explana-
tory variables in the forecast period are linear combina-
tions of the values of explanatory variables within the 
sample occur very rarely.

Bayesian interpretation of Ê+

Now, the Bayesian approach will be used to analyze the 
normal multiple regression model when the matrix UTU 
is singular. This study assumes that the vector of obser-
vations (K) has a normal distribution with mean UE and 
precision matrix τIn. The density of the vector K, with 
the vector of parameters defined as θ = (τ,ET)T, is given 
by the formula:

p(K|τ,E) = (2π)-n/2τn/2 exp(–0.5τ(K – UE)T(K – UE)) (7)

The authors assume that their prior beliefs about the 
vector of parameters θ are represented by the normal-
gamma distribution6, that is:

 p(E,τ) = p(E|τ)p(τ) = fN,m(E|μ,τ-1A-1) fG(τ|n0/2, s0/2) (8)

6 The family of normal-gamma distributions is a conjugate 
family of joint prior distributions of E and τ in the normal linear 
regression model. If the joint prior distribution of E and τ belongs 
to this family, then the joint posterior distribution of E and τ will 
also belong to the family (Zellner, 1971; Geweke, 2005).

where fN,m(·|b, B) denotes the density of an m-dimensio-
nal multivariate normal distribution with mean vector b 
and covariance matrix B, whereas fG(τ; α, β) is the den-
sity of a gamma distribution with shape parameter α and 
scale parameter β (with mean α/β). Another assumption 
is that A is a positive-definite matrix (then the matrix 
UTU + A is non-singular even though the matrix UTU is 
singular).

Under the above assumptions, the joint posterior dis-
tribution of θ is also normal-gamma:

p(E,τ|K) = p(E|τ,K)p(τ|K) =  
 = fN,m(E|μK,τ -1AK

-1) fG(τ|nK/2, sK/2) 
(9)

where 
μK = (UTU + A)-1(UTK + Aμ),
AK = (UTU + A),
nK = n + n0

sK = KTK – μK
TAKμK + μTAμ + s0.

The authors are interested in the inference about the 
vector E. It can easily be shown that the marginal poste-
rior distribution of the vector E is a multivariate t-distri-
bution with n + n0 degrees of freedom, location vector 

μK, and precision matrix ( )
K

K0

s
Ann + . For n + n0 > 2, the 

posterior mean vector and the posterior covariance ma-
trix exist, and their values are:

 E(E|K) = (UTU + A)-1(UTK + Aμ) (10)
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Now, it is assumed that A = δ2Im and μ = 0. Then 

E(E|K) = (UTU + δ2Im)-1UTK.

In (Harville, 2008, p. 513), the MP pseudoinverse of 
a matrix is expressed as a limit. Namely, for any matrix U:

( ) ( ) 1
n

2TT
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−
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+ +=+=  (12)

Thus, if δ → 0 in the prior distribution of E, and 
consequently, in the posterior, then:

 
( ) ( ) ++−

→→
==+= ÊKUKUIδUUlimEǀKElim T1

m
2T

0δ0δ
  (13)

Thus, given the precision τ, the limit of the posterior 
mean of the vector E equals Ê+. In other words, when the 
precision of the prior conditional normal distribution for 
E converges to zero (i.e. the prior distribution becomes 
very spread out), the posterior mean of E converges 
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to Ê+. But if an improper prior distribution for E is intro-
duced: p(E) ∝ constant (expressing a total ignorance of 
all elements of E), then the posterior distribution of the 
vector E (given τ) will be also improper (Zellner, 1971). 
Therefore, no inference can be made about E without in-
troducing prior information (e.g. represented by a prop-
er prior distribution for E). Zellner (1971) shows that in 
such a case, it is possible to make inferences only about 
estimable functions of the elements of E.

Example: Illustration of the UEK’s defects
Let us consider an example of sustainable rural develop-
ment in the Świętokrzyskie voivodeship, as presented 
in (Popławski and Kaczmarczyk, 2013). In this case, 
the dependent variable K represents the number of pri-
vate enterprises per 1,000 working-age population. The 

14×18 matrix U contains the explanatory variables’ val-
ues that can influence the number of private enterprises 
(see Table 1). 

In order to illustrate some serious defects of the 
UEK method when used in practice, two variants will 
be considered:
• Variant 1: all explanatory variables are expressed 

in units presented in Table 1 (Variant 1 was con-
sidered by Popławski and Kaczmarczyk, 2013, 
pp. 212–216),

• Variant 2: the explanatory variable u11 is expressed 
in PLN and u17 is expressed in 1,000 ha per capita 
whereas other variables are unchanged.
The estimation results for E (based on the MP pseu-

doinverse) are presented in Table 1. Because the matrix 
UTU is singular, the set of normal equations has infinitely 

Table 1. Explanatory variables and estimates of the vector E

Explanatory variables (ui)
Ê+

(Variant 1)
Ê+

(Variant 2)

u1 Population density (persons per square kilometer) 9.414 23.766

u2 Birthrate (per 1,000 population) 18.268 196.029

u3 Number of people domiciled per municipality area 353.016 551.314

u4 Share of pensioners –385.800 –7 225.683

u5 Share of population aged up to 55 –7 513.512 –6 938.534

u6 Population aged 64 and over 459.087 –65 759.421

u7 Ratio of population aged over 64 to population aged up to 15 367.531 11 428.772

u8 Coefficient of social burden 2 587.239 3 473.254

u9 Coefficient of social placement 401.859 –53.407

u10 Number of flats per 1,000 population 2.045 688.767

u11 Own incomes of municipal budgets (PLN thousand) per 1,000 population 2.120 –0.001

u12 Part of municipal incomes which are state budget incomes (PLN per capita) 1.359 –13.831

u13 Number of operators registered in REGON per 1,000 population 38.366 212.284

u14 Economic operators per 1,000 population –23.100 –156.841

u15 Spatial location coefficient –3 198.228 –5 565.257

u16 Share of agricultural tax in own municipal incomes 2 105.283 7 566.313

u17 Arable land (ha per capita) –437.369 –10 767.094

u18 Ratio of public economic operators registered in REGON to the total number 
of registered operators

–5 312.860 –6 619.372

Source: own elaboration based on Popławski and Kaczmarczyk (2013). The dataset was retrieved from Table 1 in Popławski and Kacz-
marczyk (2013), p. 212. In Variant 1, the results differed from those presented in Popławski and Kaczmarczyk (2013), probably due to 
the accuracy of data used.
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many different solutions. The estimator Ê+ selects only 
one of them. Estimates obtained with the use of UEK 
are not reliable because the vector E is not estimable. In 
practice, the invalidity of UEK can be easily illustrated 
by the fact that changes of measurement unit(s) of ex-
planatory variables may result in changes to estimates of 
the vector E, as shown in Table 1. These changes differ 
from what was observed in the linear regression model 
with the non-singular matrix UTU (estimated using the 
OLS estimator); in that case, if an explanatory variable is 
divided by a factor, the OLS estimate of the correspond-
ing parameter gets multiplied by this factor. This rule 
does not hold when the matrix UTU is singular, in which 
case the MP pseudoinverse is used. To summarize the 
example under consideration, the estimates of the vector 
E do not provide information about the impact of ex-
planatory variables on the dependent variable. Finally, 
it must be emphasized that the mean squared estimates 
of regression coefficients (calculated in Popławski and 
Kaczmarczyk, 2013, pp. 211 and 216) cannot be treated 
as the residual variance. 

CONCLUSION

The above considerations lead to the conclusion that 
it is methodologically inappropriate to use the UEK 
method to estimate the vector of parameters E in the 
linear regression model. This is because when the ma-
trix of values of explanatory variables has less than full 
column rank, it is impossible to estimate all regression 
coefficients based only on the available dataset (addi-
tional information is needed, e.g. a prior distribution of 
the vector E). As pointed out by Searle (1966), the best 
linear unbiased estimators (the same for all solutions of 
normal equations, obtained with the use of a generalized 
inverse matrix) exist only for certain linear functions of 
parameters, known as estimable functions. On the other 
hand, in the case when the matrix of values of explana-
tory variables has full column rank, the UEK method is 
equivalent to the ordinary least squares method which 
can be effectively used only under certain assumptions 
for explanatory variables and random disturbances.
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