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Abstract. Climate affects crop production decisions and out-
comes in agriculture. From very short-term decisions about 
which crops to grow, when to plant or harvest a field, to longer-
term decisions about farm investments, climate can positively 
or negatively affect agricultural systems. Although the general 
effects of climate change on agriculture are broadly under-
stood, there are limited studies that model the relationship be-
tween specific crops and climate variables. The study uses the 
Autoregressive Distributed Lag (ARDL) model to analyze the 
sensitivity of maize yield to climate variables, fertilizer use 
and other non-climate variables. This paper uses annual time-
series data of 47 observations spanning from 1970 to 2016. 
The results reveal that rainfall and temperature are important 
maize yield drivers in South Africa. However, if excessive, 
they will produce negative effects. The findings of this analy-
sis are relevant for designing long-term interventions to miti-
gate the effects of climate change on maize production.

Keywords: maize, climate variability, ARDL model, cointe-
gration

INTRODUCTION

Climate affects crop production decisions and outcomes 
in agriculture. From very short-term decisions about 
which crops to grow, when to plant or harvest a field, to 
longer-term decisions about farm investments, climate 
can positively or negatively affect agricultural systems. 

Although a natural phenomenon, climate variability has 
in recent years been exacerbated by anthropogenic in-
terferences, resulting in higher incidences of extreme 
weather events such as drought, floods and increased 
temperatures. In most developing countries, including 
South Africa, the agricultural sector plays a key role 
in the economy, including by providing food and raw 
materials to industry, creating employment and being 
a source of foreign currency earnings. However, it pri-
marily depends on climate variables. Changes in climate 
variables, particularly rainfall, affect agriculture in mul-
tifaceted ways, including changes in yield, reduced total 
output, changes in trade flows and increased food inse-
curity (BFAP, 2016). Although climate is accepted to be 
a primary determinant of agricultural productivity, the 
relationship between different climate variables and ag-
ricultural productivity is complex and uncertain (Adams 
et al., 1998; Estes et al., 2013).

In 2015, South Africa recorded the lowest national 
annual rainfall since 1904 (SAWS, 2016), which affect-
ed production of most agricultural commodities. Grain 
South Africa reported that wheat harvests suffered from 
the lowest rainfall in more than a century, falling to a four-
year low in 2015, and an 18% drop from the 2014 yields. 
Similarly, maize yields were predicted to decline by about 
11% in 2016 (BFAP, 2016), resulting in the country hav-
ing to import maize for the first time since 2008. 
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Although the general effects of climate change on 
agriculture are broadly understood, there are limited 
studies that model the relationship between specific 
crops and climate variables. Whilst yields are ultimately 
a result of interaction of several biophysical and socio-
economic factors, the former are mostly beyond the con-
trol of a farmer or the government (Adams et al., 1998). 
South Africa is generally considered as a water scarce 
country with few areas being suitable for production of 
wheat (Estes et al., 2013). Increased understanding of 
the interaction between crop yields and climate variabil-
ity, coupled with sensitivity analysis, in both the short 
term and the long term, can contribute towards better 
decision-making at both farm and policy levels. The use 
of econometric and mathematical models in analyzing 
the relationship between climate change and agricul-
tural output can help make decisions regarding amend-
ments to climate change policy (Simelton et al., 2009) 
and design appropriate insurance packages for farmers.

The main objective of this study is to analyze the 
relationship between maize yield and climate variables 
in the South African agricultural sector. The study also 
incorporates non-climate variables such as fertilizer 
consumption, producer price of maize and agricultural 
policy in the analysis. Thus, the study seeks to test the 
hypothesis that maize yield is not affected by climate 
and non-climate variables. The paper focuses on the 
maize crop which is of strategic interest to South Af-
rica in several ways, topmost of which are food security 
and agricultural trade balance. Secondly, the paper sepa-
rately considers short-term and long-term relationships 
between climatic variables and yield, through the use of 
econometric techniques that have not previously been 
applied to the problem in South Africa. According to 
Adams et al. (1998), the commonly used approaches are 
controlled field experiments or crop simulation models. 
This paper offers an alternative approach by using data 
from observed national yields, climate and non-climate 
agribusiness organizations and the government. 

DATA AND ANALYTICAL METHOD

Data and specification of variables
Annual time-series data of 47 observations spanning 
from 1970 to 2016 is used in this study. Data pertain-
ing to maize yield measured in tons per hectare was 
extracted from the Abstract of Agricultural Statistics 
(2017) maintained by the Department of Agriculture 

Forestry and Fisheries (DAFF, 2016). In addition, av-
erage monthly rainfall figures measured in millimeters 
and average temperature figures measured in degrees 
Celsius were obtained from the South African weather 
services. Rainfall and temperature are major determi-
nants of crop yields in rainfed agriculture (Blanc, 2013). 
Hence, to establish a climate/crop yield association, this 
study used time series for rainfall and temperature as 
proxy variables for climate variability. Rainfall is gen-
erally found to have a positive relationship with crop 
yields (Blanc, 2013; Amponsah et al., 2015). 

In South Africa, the leading maize producing prov-
inces are the Free State, Mpumalanga and Northwest 
(DAFF, 2016). In 2015, they contributed 80% to total 
maize output in South Africa. Therefore, average an-
nual rainfall and temperature values were computed 
based on monthly rainfall and temperature figures from 
the three provinces. The values were recorded from 3 
weather stations, namely Kroonstad, Potchefstroom and 
Komatidraai located in the Free State, Northwest and 
Mpumalanga provinces, respectively. Rather than total 
annual rainfall and temperature, the figures recorded 
during the production months are considered important. 
Hence, the average rainfall and temperature recorded in 
the six production months for maize (October, Novem-
ber, December, January, February and March) are used 
in the analysis. Time series values of fertilizer consump-
tion (measured in metric tons) were also included in the 
analysis. Data on producer price of maize was obtained 
from the South African Grain Information Services 
(SAGIS). The variables used in the study were chosen 
based on economic theory and previous studies related 
to the subject. Other non-climatic variables such as crop 
variety selection and crop management were not consid-
ered due to lack of long-term annual data series.

Data analysis
The general relationship between the dependent vari-
able (Maize yield) and its associated explanatory vari-
ables can be expressed in the form of a simple supply 
function specified as: 

	 Myt = f(RFt, Tmpt, Fconst, Mpricet, Policy)	 (1)

where:
Myt	 =	supply variable measured by maize yield in 

tons/hectare
RFt	 =	average annual rainfall variable measured 

in millimeters
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Tmpt	 =	average temperature variable measured in 
degrees Celsius

Fconst	 =	fertilizer consumption measured in metric 
tons

Mpricet	=	real producer price of maize (deflated by 
the producer price index)

Policy	 =	dummy variable for years before and after 
liberalization of the grain industry (peri-
od 1: 1970–1997; period 2: 1998–2017). 
Periods 1 and 2 take the value of 0 and 
1, respectively. The variable will be used 
to measure the impact of the agricultural 
marketing policy introduced in 1997. 

Analytical technique
The Autoregressive Distributed Lag (ARDL) model, 
also known as the bounds testing cointegration tech-
nique originally developed by  Pesaran et al., 2001 was 
used to sufficiently assess the effects of climate vari-
ability and fertilizer use on maize yield. The model has 
been successfully used in various studies to estimate the 
relationship between crop yields and climate variables 
(Mbaga and Coyle, 2003; Janjua et al., 2014; Ampon-
sah et al., 2015; Sarkodie and Owusu, 2016). The ARDL 
model provides an efficient platform for testing and es-
timating long-run relationships based on actual time 
series data (Hassler and Wolters, 2006) while also be-
ing perfectly suited for short time series (Duasa, 2010). 
Pesaran et al. (2001) suggested that the major advantage 
of ARDL is its flexibility in analyzing variables of dif-
ferent orders of integration. The cointegration test ap-
proach based on Johansen (1991) necessitates that all 
the variables be integrated of the same order, i.e. I(1). 
Hence, this approach is not suitable and cannot be ap-
plied in this study. The general function of a simple 
ARDL (1,1) model is specified as: 

	 Yt = δ + θYt–1 + Ø0Xt + Ø1Xt–1 + εt	 (2)

T = 1, 2, …, T
εt~i.i.d{0,σ2}.

The model is autoregressive because the lagged 
values of the dependent variable Yt partially explain 
themselves. A distributed lag component is present in 
the form of successive lags of the explanatory variable 
Xt. The model was used in this study to determine the 
short- and long-run price elasticities for each selected 
individual gain crop in South Africa. Hence, the model 

was applied in two steps. The existence of a long-run re-
lationship amongst the variables was determined in the 
first step whereas the second step consisted in estimat-
ing the model’s short-term and long-term coefficients. 

The ARDL model used in this study to measure the 
long-run relationship among the variables is specified as:
	 q	 p1

lnMyt = α0 + ∑
i=1

α1ilnMyt–i + ∑
i=1

α2ilnRFt–i + 
	 p2 

	 p3

	 ∑
i=1

α3ilnTmpt–i + ∑
i=1

α4ilnFconst–i	
(3)

If the variables are cointegrated, then there exists 
an error correction representation. The short-run coef-
ficients were estimated by the following ARDL error 
correction model (ECM):
	 q	 p1

lnMyt = α0 + ∑
i=1

α1iΔlnMyt–i + ∑
i=1

α2iΔlnRFt–i + 
	 p2 

	 p3

	 ∑
i=1

α3iΔlnTmpt–i + ∑
i=1

α4iΔlnFconst–i + 	 (4)
	 p4 

	 p5

∑
i=1

α5iΔMpricet–i + ∑
i=1

α6iPolicy + α7iECT + ui

∀i = 1, 2, … k
where α7 represents the speed of adjustment (ECM term) 
which measures the deviation of Myt from the long-run 
equilibrium level. All the variables except D were ex-
pressed in natural logarithms. The log transformation 
was employed to obtain a more homogeneous vari-
ance of a series (Luetkepohl and Xu, 2009). E-views 10 
econometric software was used to carry out the analysis, 
with the optimum lag lengths chosen based on the Akai-
ke Information Criterion (AIC) and Schwarz Bayesian 
Criterion (SBC).

Unit roots test
One of the requirements of the ARDL method is that 
none of the variables be integrated of order 2. The model 
collapses in the presence of any variable of second order 
(Granger and Newbold, 1974). Hence, the Augmented 
Dickey Fuller (ADF) and the Kwiatkowski-Phillips- 
-Schmidt-Shin (KPSS) unit root tests were applied to 
check for the order of integration. 

Diagnostic checks
The consequences of model misspecification in regres-
sion analysis can be severe in terms of the adverse ef-
fects on the sampling properties of both estimators and 
tests (Greene, 2017). Thus, to validate the goodness of 
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fit of the ARDL model, relevant diagnostic tests were 
applied, such as the Jarque-Bera test for normality, 
Breusch-Godfrey LM test for serial correlation and the 
White test for heteroskedasticity.

Stability tests
The Cumulative Sum (CUSUM) and Cumulative sum of 
squares (CUSUM squares) tests will be used to test for 
model stability. These tests have been used by several 
authors such as Janjua et al. (2014) to examine whether 
the parameters of a model are stable across various data 
sub-samples.

RESULTS AND DISCUSSION

Descriptive statistics
Understanding the properties of the variables involved 
in the analysis is an essential prerequisite for modeling 
time series data. Thus, various descriptive statistics (in-
cluding mean, standard deviation, kurtosis, skewness, 
minimum and maximum) for all variables involved in 
the maize model are summarized in Table 1. On aver-
age, 2.5 tons per hectare of maize are produced at na-
tional level in South Africa. Temperatures and rainfall 
peak in summer, the time during which maize is pro-
duced (between October and March). For the sampled 
period, average annual rainfall and temperature are 
89.81 millimeters and 13.39°C, respectively. The cli-
mate variables show relatively high standard deviation 
values, indicating that the data points are spread out 
over a large range of values. This is also an indication of 

high climate variability. The sample kurtosis and skew-
ness values reflect non-normality in some of the vari-
ables. This was corrected by logarithmic transformation 
and first differencing.

Unit root test results
The results of the ADF and KPSS unit root tests, as 
presented in Table 2, show that all variables are non-
stationary at level, except for rainfall and maize yield. 
As expected, all the non-stationary series became sta-
tionary after first difference.

The null hypothesis of unit root cannot be reject-
ed at level since not all series are stationary at level. 
However, the hypothesis of unit root in all series was 
rejected at a 5% level of significance for all series after 
first difference. These results demonstrate that the series 
are integrated of order one, 1(1) and order zero, 1(0). 
Since none of the variables are integrated of second or-
der difference, the ARDL model is estimated and a valid 
bounds test is applied.

ARDL model results 
The short-run regression results of the ARDL model for 
the period 1970–2016 are presented in Table 3. Based 
on the minimum Akaike Information Criterion (AIC), 
the ARDL (1,1,1,0,0) model was considered to be the 
best fitted. 

The value of the adjusted R2 is 0.72, the F-statistic is 
13.94 and is significant at 5% and 10%, which is accept-
able to show overall fitness of the model. 

Table 1. Summary statistics for variables used in the ARDL model (1970–2016)

Statistical option My RF Tmp Fcons Mprice

Mean 2.5204 89.8186 13.3941 378 201.5300 856.2289

Standard deviation 0.9678 18.0312 1.1363 71 217.9200 212.9310

Kurtosis –0.4468 –0.4796 –0.1751 1.0164 –1.1145

Skewness 0.4263 –0.0149 0.2658 –0.9937 0.0166

Range 4.0212 73.6690 5.0000 336 584.0000 837.3522

Minimum 0.8180 55.0281 11.2000 180 685.0000 419.3103

Maximum 4.8392 128.6971 16.2000 517 269.0000 1 256.6625

Source: own elaboration.
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Diagnostic tests results
The validity of the ARDL model was confirmed through 
relevant diagnostic tests. The results of the tests, as pre-
sented in Table 4, strongly suggest that the model is ad-
equate in terms of its specifications. 

Stability test results
The Cumulative sum (CUSUM) and Cumulative sum 
of squares (CUSUM of squares) tests were applied to 
validate the stability of the ARDL approach. The results 
of the tests are presented in graphical form (see Fig. 2 
and 3). The output shows that the CUSUM lines in both 

Table 2. Results of unit root tests at levels

Variables
ADF test statistics KPSS test statistics 5% significance 

level
10% signifi-
cance levelLevel 1st difference Level 1st difference

LnMy –1.0878 –7.4958 0.06157 0.119663 I(0) 1(0)

LnFcons –3.7491 –9.2532 0.513067 0.64837 1(1) I(1)

LnRF –5.9547 –9.3789 0.06157 0.19025 I(0) I(0)

LnTmp –2.4562 –8.5940 0.126720 0.159251 I(1) I(1)

LnMprice –4.6873 –7.6996 0.47072 0.50000 I(1) I(1)

Notes:
All variables include intercept and linear trend.
All variables are in logarithmic form.

Table 3. ARDL (1,1,1,0,0) regression results

Variable Coefficient Std. error t-Statistic Prob.* 

Ln(My-1)) 0.29300 0.11981 2.44563 0.0195**

Ln(Tmp) –0.41580 0.56510 –0.73580 0.4666

Ln(Tmp(-1)) 0.81275 0.31930 2.54542 0.0153**

Ln(RF) 1.04708 0.14372 7.28553 0.0000**

Ln(RF(-1)) –0.27907 0.19931 –1.40019 0.1700

Ln(Fcons) 0.42837 0.18552 2.30899 0.0268**

Ln(MPrice) 0.29195 0.16572 1.76173 0.0866*

Policy 0.21007 0.11886 1.76734 0.0856*

Constant –10.18477 2.67522 –3.80707 0.0005**

Trend 0.00642 0.00354 1.81463 0.0779*

R-squared 0.777146 Durbin-Watson stat 2.0298

Adjusted R-squared 0.721433  

F-statistic 13.94898  

Prob(F-statistic) 0.00000    

*Significant at 10% level. **Significant at 5% level.
Note: the dependent variable is maize yield (My).
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Figures are positioned between the critical bound of 5% 
significance level over time, indicating that the model is 
largely stable. 

After having confirmed the validity of the model, 
the bounds test was conducted to determine if there is 
a long-run relationship among the variables.

Bounds test results
One of the main purposes of estimating an ARDL model 
is to use it as a basis for the bounds test. The approach 
relies on the F-test statistic to determine the significance 

of lagged levels of the variables. From Table 5, the F-
-statistic value of 6.2025 is greater than the upper bound 
critical values at 1%, 2.5%, 5% and 10% levels, respec-
tively. Accordingly, the null hypothesis of no long-run 
relationship is rejected. The results indicate that there is 
a long-run relationship among the estimated variables. 

Long-run elasticities of the ARDL model
The presence of a long-run relationship among vari-
ables validates the estimation of an ARDL long-run 
model to obtain the long-run parameters. The results of 

Table 4. Diagnostic tests

Test Method Result p-value Conclusion

Normality Jarque–Bera test 0.04939 0.9756 Residuals are distributed normally

Heteroskedasticity White test 1.086207 0.3941 No sign of heteroskedasticity

Serial correlation Breusch–Godfrey test 1.110387 0.3408 No sign of serial correlation

Source: own calculations.
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Fig. 1. CUSUM test results
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Fig. 2. CUSUM of squares

Table 5. Results of the F-bounds test

Test statistic Value Level of significance Lower bounds I(0) Upper bounds I(1)

F-statistic  6.2025 10% 2.75 3.79

k 5 5% 3.12 4.25

2.5% 3.49 4.67

  1% 3.93 5.23

Null hypothesis: no long-run relationship.
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the long-run model are presented in Table 6. The long-
run coefficient of rainfall is positive and significant at 
5%, suggesting that a 10% increase in rainfall (RF) will 
lead to an increase in maize yield by about 10.8% in the 
long run. The results are consistent with the findings by 
(Mwaura and Okoboi, 2014) who observed a positive 
long-run association between rainfall and crop yields in 
Uganda. Several empirical studies have also acknowl-
edged the importance of the rainfall variable in explain-
ing crop yield in rainfed agriculture (Blanc, 2012; Sha-
koor et al., 2015). In South Africa, maize production is 
largely rainfed and hence understanding the relationship 
between maize yield and rainfall is crucial in supporting 
informed policy decision-making. 

The long-run elasticity of maize yield with respect to 
fertilizer consumption is positive and significant at 5%, 
indicating that an increase in fertilizer use by 10% will 
lead to an increase in maize yield by about 6.06%. Ferti-
lizers are an important output driver in the South African 
agricultural sector and play a pivotal role in improving 
crop yields. Agreeably, Janjua et al. (2014) argued that 
in the long run, fertilizers enhance land fertility causing 
an increase in agricultural production. Hence, the results 
validate the importance of fertilizer use in explaining 
maize yield changes in the long run. 

The coefficient of the maize price variable is posi-
tive and significant at 10%, indicating that a 10 percent 
increase in the price of maize will be followed by an 
increase in maize production of about 4.1 percent in the 
long run. Maize prices play a pivotal role in stimulating 
crop production in South Africa. Economic theory sug-
gests that farmers generally respond to high crop prices 
by adopting better farming methods which in turn im-
prove crop yields. The long-run parameters obtained in 

this study are also comparable to Alemu et al. (2003) 
who recorded long-run price elasticities of 0.51 for 
maize in Ethiopia.

The coefficient of the policy variable is positive and 
significant at 5%. This finding suggests a positive long-
run effect of the agricultural marketing policy on maize 
production in South Africa. The introduction of agri-
cultural policies in the 1990s freed agricultural markets 
from stringent regulations, and this in turn created a free 
market system which allowed farmers to trade goods 
at competitive prices and have access to better farming 
technologies. This environment improved crop yields 
and enhanced food production in the country. The tem-
perature variable is insignificant in the long-run, pos-
sibly suggesting that other variables (such as rainfall, 
fertilizer consumption) are better maize yield drivers 
than temperature in South Africa.

Results of the error correction model
The presence of a long-run relationship among the vari-
ables validates the estimation of the error correction 
model to compute the short-run parameters. The results 
of the short-run dynamic error correction model (ECM), 
as presented in Table 7, indicate that in the short run, all 
variables are significant at 5% and 10%.

The estimated long-run elasticity of supply of maize 
to rainfall is 1.04. This suggest that a 10 percent increase 
in rainfall increases maize yield by 10.4% in the short 
run. The sign of the estimated coefficient is positive and 
in line with economic theory. Interestingly, the coef-
ficient of the temperature variable is negative and sig-
nificant at 10%. This finding suggests that an increase 
in temperature levels by 10% decreases maize yield by 
4.1%. The finding agrees with Meng et al. (2016) who 

Table 6. ARDL model long-run results

Variable Coefficient std. error t-statistic Prob.

Ln(Tmp) 0.5615 1.1275 0.4980 0.6215

Ln(RF) 1.0863 0.3070 3.5387 0.0011*

Ln(FC) 0.6059 0.2776 2.1823 0.0357*

Ln(MPrice) 0.4129 0.2483 1.6628 0.1050**

Policy 0.2971 0.1395 2.1298 0.0401*

*Significant at 10% level. **Significant at 5% level.
Note: the dependent variable is maize yield (My).
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showed that the effects of temperature changes can dif-
fer between the crops, and that high temperatures can be 
harmful in some periods, but not necessarily in all stages 
from planting to harvest. The coefficient of the error cor-
rection term Ecmt-1 has a value of 0.7070 and is nega-
tive and statistically significant at 5%. It demonstrates 
that after a 10-percent shock to the system, the long-run 
equilibrium relationship of maize yield is quickly rees-
tablished at the rate of about 70% per annum. The result 
demonstrates a fairly high adjustment process. Given 
the results obtained in this study, the null hypothesis 
stated earlier in the paper is therefore rejected, and the 
conclusion is that climate and non-climate variables af-
fect maize yield in South Africa.

CONCLUSION

The study investigated whether the newly evolving 
risk of climate variability is influencing maize yields 
in South Africa. Annual time-series data of 47 observa-
tions spanning from 1970 to 2016 was used. The Autore-
gressive Distributed Lag (ARDL) model was applied to 
examine the impact of climate and non-climate vari-
ables on maize yield. The results reveal that rainfall and 
temperature are important maize yield drivers in South 
Africa. However, if excessive, they will produce nega-
tive effects. The study has also shown that non-climatic 
variables such as fertilizer and policy also significantly 
influence maize yields. Long-run results revealed that 
fertilizer and rainfall will play a huge role in improving 
and maintaining maize yields in the future. The findings 

of this analysis are relevant for designing long-term in-
terventions to mitigate the effects of climate variables 
on the country’s staple crop. While government policies 
cannot affect natural conditions like rainfall and temper-
ature, they can compensate for the negative impact of 
climate change by increasing investments in irrigation, 
promoting efficient use of water and encouraging the 
adoption of drought-resistant varieties. Also, improv-
ing the farmers’ access to seasonal weather information 
can be another tool of effective adaptation for climate 
variability.
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