
© Copyright by Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu

INTERCATHEDRA
3(44), 2020, 157–164

http://www.up.poznan.pl/intercathedra/
pISSN 1640-3622
eISSN 2545-2045

http://dx.doi.org/10.17306/J.INTERCATHEDRA.2020.00104
Accepted for print: 21.01.2021

M. Phil. Computer Science Ajit Singh, Department of Computer Science, Patna 800001, Bihar India,
e-mail: ajit_singh24@yahoo.com

INTRODUCTION

The performance processer has been developed by
Wuxi Jiangnan Institute of Computing Technology. It
belongs to the Sunway series. It has good performance
in supercomputers and in the field of high-performance
computing. And it is the main building-block of the
current world’s third-fastest supercomputer: Sunway
Taihu Light(Fu et al., 2016). This processor has been
used in many fields of high-performance computing,
such as computational mechanics (Duan et al., 2012),

bioinformatics (Wang et al., 2018) deep learning (Fang
et al., 2017) etc. But for a long time, application devel-
opment on the processor presents several difficulties,
such as high learning costs, being highly associated with
hardware, hard to migrate etc. The SW26010 processor
consists of 4 management processing elements (MPE,
also called master core) and 256 computing process-
ing elements (CPE, also called slave core). However, the
slave core of the SW26010 processor can only run one
thread and it does not support blocking and switching,
which limits its parallel ability. Therefore, our team uses

Ajit Singh1

1Patna Women’s College, India

COMMUNICATION COROUTINES FOR PARALLEL PROGRAM
USING SW26010 MANY CORE PROCESSOR

Abstract. Communication between parallel programs is an indispensable part of parallel computing.
SW26010 is a heterogeneous many-core processor used to build the Sunway Taihu Light supercomputer
which is well suited for parallel computing. There is the designing and implementing of a coroutine schedul-
ing system on the SW26010 processor to improve its concurrency, and it is very important and necessary that
communication between coroutines for the coroutine scheduling system is achieved in advance. Therefore,
this paper proposes a communication system for data and information exchange between coroutines on the
SW26010 processor which contains the following parts. The designing and implementation of a producer-
consumer mode channel communication based on ring buffer, and designing a synchronization mechanism
for the condition of multi-producer and multi-consumer based on different atomic operations on MPE (man-
agement processing element) and CPE (computing processing element) of SW26010. There is also the de-
signing of a wake-up mechanism between the producer and the consumer, which reduces the waiting time
of the program for communication. The testing and analysis of the performance of a channel with different
numbers of producers and consumers, leads to the conclusion that when the number of producers and con-
sumers increases, performance of the channel will decrease.

Keywords: coroutine, SW26010, many-core, parallel communication, synchronisation

Singh, A. (2020). Communication coroutines for parallel program using SW26010 many core processor. Intercathedra 3(44), 157–164.
http://dx.doi.org/10.17306/J.INTERCATHEDRA.2020.00104

158

the idea of coroutine, and designs a coroutine running
framework on the SW26010 processor to replace the
direct use of threads on CPEs, which breaks through
the parallel restriction of the Sunway manycore proces-
sor and enables the upper applications to be run more
efficiently.

The communication between coroutines needs to
be discussed as an indispensable part of the coroutine
running framework. Since the communication between
threads on a Sunway manycore processor is mainly
based on batch data transfer, and there is no fine-
grained communication method suitable for ordinary
programs, this paper designs a channel communica-
tion method that can exchange messages between co-
routines on either MPE or CPE of a Sunway processor,
and provides a guarantee for the cooperation of parallel
coroutines.

This paper includes the following parts: First, the
channel of communication in the producer-consumer
mode is implemented based on a ring buffer, and then, to
ensure that no errors occur on the condition of multiple

producers or multiple consumers competing with each
other, the mechanism of synchronization is designed
based on different atomic operations on the master and
slave core, which ensures the correctness of data trans-
mission. Next, a wake-up mechanism of producer and
consumer has been designed which reduces the waiting
of the program for communication. At last, this paper
tests the performance of the channel in different num-
bers of producers and consumers.

BACKGROUND AND RELATED WORK

The SW26010 many-core processor
SW26010 is a heterogeneous many-core processor, in-
dependently developed and designed by Wuxi Jiangnan
Institute of Computing Technology of China. The heter-
ogeneous many-core architecture is adopted combining
on-chip computing array cluster and distributed shared
storage. The Sunway multi-core processor is commonly
used in the execution of high-performance computing
programs. Its hardware architecture is shown in Figure 1.

Fig. 1. SW26010 processor

159

Singh, A. (2020). Communication coroutines for parallel program using SW26010 many core processor. Intercathedra 3(44), 157–164.
http://dx.doi.org/10.17306/J.INTERCATHEDRA.2020.00104

Each SW26010 chip contains 260 cores which are
divided into four core groups (CGs). Each core group
contains a management processing element (MPE, or
master core), and 64 subordinate computing process-
ing elements (CPE, or slave core). The frequency of the
master and slave core is 1.45GHz. 64 slave cores are
combined into a CPE cluster organized as an 8×8 mesh.
Each core group is connected with an 8GB memory
through a memory controller (MC), and the four core
groups are connected through a network-on-chip (Noc).
The Sunway 26010 processor is designed based on the
alpha instruction set in which the master core supports
the complete alpha instruction set, while the slave core
supports the simplified alpha instruction set. As for the
storage structure, the master and slave cores can both
access the main memory, Each MPE has a 32KB L1 data
cache and a 256 KB L2 instruction/data cache to ensure
fast read and write operations of the main memory,
while the slave core has no cache for memory read and
write, resulting in inefficient access to memory. But each
slave core contains a 64KB local device memory (LDM)
which can store the data needed for program running
on the core. Each slave core can read and write its own
LDM quickly, but cannot access the LDM of other slave
cores, a slave core can copy data from the main memory
to LDM or write it back in batches by Direct Memory
Access (DMA). The whole chip can provide computing
peak performance over 3TFlops.

The operating system is a customized Linux flavor
running on the MPE, C/C++ and FORTRAN programs
are supported on MPE and C, as well as on CPE. The MPE
and CPE on Sunway processor have different running en-
vironments, so the programs on the MPE and CPE need
to be compiled separately, and then packaged in a single
executable file using mixed compilation, finally submit-
ted to a work queue for execution. It can be seen from the
calculation structure of the SW26010 processor that the
computing power of CPEs accounts for more than 98%
of the computing power of the whole chip, so the devel-
opment of application on an SW26010 processor needs
to give full play to the computing power of CPEs. In
general, application development on SW26010 is based
on the parallel execution of MPE and CPE. Computing
tasks are divided into small blocks and assigned to CPEs
to be executed, and the MPE executes communications
or other parts that CPEs cannot run. This way, the core
computing part of the program can be executed by CPEs,
and MPE is only responsible for the management part.

Implementation of coroutine on an SW26010
processor
A coroutine is a user-controlled way of switching pro-
grams and achieving concurrency without operating
system scheduling. The concept of coroutine is not
complex. The basic principle is that when a program is
running, it can actively give up its own control of run-
ning so that the thread can switch to other programs.
Therefore, there are some simple coroutine implemen-
tations (Bailes, 1985). However, good implementation
of a coroutine requires a more detailed design in terms
of scheduling and communication (Pauli and Soffa,
1980). Owing to less system resource costs compared to
threads, a coroutine is often used in high-concurrency
scenarios such as ib crawlers, distributed system (Hui-
-Ba et al., 2008), simulation mechanism (Xu and Li,
2012) etc. For the SW26010 processor, only one thread
runs on a CPE. This scheme does not support blocking
and switching and it limits its parallel ability. The use of
coroutine can break through the concurrency restriction
of CPE, and can achieve multiple concurrency on a CPE
only with one single thread. So our team decided to de-
velop a framework of coroutine on the SW26010 proces-
sor. Based on the master-slave parallel structure of the
SW26010 processor, i design and implement a coroutine
library (Basiles, 1985) which combines dispatch, execu-
tion, communication and other modules. The coroutine
framework based on the athread interface provided by
SW26010, using threads on CPEs as coroutines instead
of using it directly. In this way, upper applications can
achieve higher concurrency and gain more efficiency.
Coroutines on SW26010 processor is shown in Figure 2.

Fig. 2. Coroutines on SW26010 processor

Singh, A. (2020). Communication coroutines for parallel program using SW26010 many core processor. Intercathedra 3(44), 157–164.
http://dx.doi.org/10.17306/J.INTERCATHEDRA.2020.00104

160

The implementation of coroutine on the SW26010
Processor involves the following stages:
1. Scheduler: The scheduler is run on MPE, which cre-

ates a coroutine, initializes the coroutine, and assigns
the coroutine to the execution queues of different ex-
ecutors on CPEs, waiting for the executor to execute.

2. Executors: Executors are run on CPEs, and a CPE can
only run one executor so each core group contains
64 executors, and executors can execute specific pro-
grams. Each executor contains two queues, of which
one is a runnable queue, and the other is a wait queue.
The runnable queue contains coroutines that can be ex-
ecuted, and the wait queue contains coroutines blocked
because of communication or for other reasons.

3. Communication module: If coroutines need to coop-
erate with each other, they need to communicate and
exchange data. The communication module of a co-
routine is called a channel, and a coroutine can send
messages to other coroutines with the use of a chan-
nel. This paper is mainly to introduce the communi-
cation module.

DESIGN OF COMMUNICATION BETWEEN
COROUTINES

Data structure of a channel
A channel’s data structure is based on a ring buffer.
A ring buffer (Zhangdun et al., 2012) is a first-in-first-
out data structure that reduces duplicate address opera-
tions and increases stability relative to queues (Feldman
and Dechev, 2015). Ring buffers are widely used in vari-
ous fields (Bergauer et al., 1996). It is easy to separate
data writing from reading with the use of a ring buffer,
which avoids competition between reading threads and
writing threads, and reduces the use of locks. I have
used ring buffer as channel’s infrastructure. The working
principle of the ring buffer is shown in Figure 3.

As shown in Figure 3, in a fixed-size buffer, there are
two pointers: read and write. When some data is written
to the buffer, write increases. When some data is read

from the buffer, read increases. Using a ring buffer, the
producer-consumer mode can be simply realized. Be-
cause the producer only affects the write pointer and
the consumer only affects the read pointer, when there
is only one producer and one consumer, there is no
need to lock the buffer, which increases the efficiency of
communication. The channel structure including a ring
buffer is as follows:

typedef struct {
char *buffer;
int capacity;
int elem_size;
int read;
int write;
int to_read;
int to_write;
list read_queue;
list write_queue;
}channel;

In the channel structure, buffer refers to the buff-
er where data is stored, elem_size refers to the size of
a message, capacity refers to the maximum number of
messages stored in the buffer, write refers to the loca-
tion where the message will be written, read refers to
the next message that can be read, to_read and to_write
are used to ensure parallel synchronization when multi-
ple producers or consumers are involved, which will be
described in detail in the next section. The two lists are
used to store coroutines waiting on the channel when
send or receive fails, which will be described in Section
3.3. The data structure of the channel is stored in the
main memory so that both MPE and CPE can access it.

Design of parallel synchronization mechanism
With ring buffer, messages can be delivered safely with-
out a synchronization mechanism in the case of a sin-
gle producer and a single consumer. But when there
are multiple producers or consumers, the contention
of multiple threads for the same data may result in data
coverage. Therefore, certain measures need to be taken
to ensure that the data in the channel is correct (He,
2012). In x86 instruction computers, CAS (compare and
swap) atomic operation is often used to deal with multi-
threading competition (Michael, 2003). In the SW26010
processor, MPE and CPE have different levels of instruc-
tion support. CAS operation is supported on MPE, but Fig. 3. Ring buffer structure

161

Singh, A. (2020). Communication coroutines for parallel program using SW26010 many core processor. Intercathedra 3(44), 157–164.
http://dx.doi.org/10.17306/J.INTERCATHEDRA.2020.00104

not on CPE. First, CAS operation is used to deal with
multithreading competition on MPE.

Parallel synchronization mechanism on MPE
CAS (compare and swap) can compare and exchange
data in one instruction, which is commonly used in the
unlocked algorithm. Its common form is as follows:

CAS (dest, oldval, newval)

Where dest is the data address, oldval is the cur-
rent value, and newval is the new value. When the value
pointed to by dest is equal to oldval, the value will be up-
dated to newval and true will be returned, otherwise, it
will not be updated and false will be returned. When two
threads use CAS instruction at the same time, only one
thread can succeed, and other threads will fail, thus it is
ensures that only one thread can complete CAS opera-
tion and process data. Using CAS operation to build the
parallel synchronization mechanism of message sending
is as follows:

do {
 if (full(chan)){
 co_swap_out();
 }
 temp = chan->write;
 next = temp+1;
 ok = CAS(&chan->write, temp, next);
} while (!ok);
//copy data here

When sending data to the channel, it is first deter-
mined whether the channel is full. If it is full, it is unable
to send data to the channel, which gives up the control
right and lets other coroutines run. If the channel is not
full, it first reads the write pointer and then updates the
write value with CAS operation. If it succeeds, it means
that no other coroutines successfully change the write
value, data can be sent to the buffer according to the
write pointer. Note that while other coroutines may op-
erate on write values when current coroutine writes data
to the buffer, data coverage will not occur because the
write location in the buffer has been determined.

Parallel synchronization mechanism on CPE
While CAS can be used in MPE to realize the synchro-
nization of parallel programs and ensure the correctness

of communication, it is not supported on CPE. There is
only one atomic operation supported on CPE, which can
modify data. Its interface is as follows.

updt(_n_, _addr_)

This operation represents adding _n_ to the data
pointed by _addr_. Parallel synchronization of a channel
is more difficult to achieve on CPE because the atomic
operation changes data directly without comparison.
This paper uses the mechanism shown below to syn-
chronize channels:

 while (1){
 if (full(chan)){
 co_swap_out();
 }
 temp = chan->write;
 if (temp == chan->to_write)}
 updt_addw(1,&(chan->write));
 } else {
 continue;
 }
 if (chan->write == temp+1){
 //copy data here
 updt_addw (1,&chan->to_write);
 return 0;
 } else {
 updt_addw (-1,&chan->to_write);
 continue;
 }
}

In order to synchronize the writing of buffer using
atomic operations, ‘to_write’, a comparison of the write
pointer is introduced. When ‘to_write’ and ‘write’ are
equal, it indicates that no coroutine is sending messages
to the channel. When they are not equal, it indicates that
a coroutine is sending. At the beginning, I read the value
of variable ‘write’ saved in the variable ‘temp’, and com-
pared with the value of ‘to_write’. If they are not equal,
it means that another producer has modified the value
of ‘write’. At this point, the ‘write’ value should be read
again. If they are equal, it means that another producer
has finished sending to the channel, then this producer
will modify the value of ‘write’. Since comparison and
update cannot be performed in one instruction, com-
parison and update may still be performed by two

Singh, A. (2020). Communication coroutines for parallel program using SW26010 many core processor. Intercathedra 3(44), 157–164.
http://dx.doi.org/10.17306/J.INTERCATHEDRA.2020.00104

162

producers in the order of 6.-6.-7.-7., there is still a case
where two producers have modified the value of vari-
able ‘write’, so I read the value of variable ‘write’ again
and compared with the value saved by the local vari-
able ‘temp’. If the current value of variable ‘write’ equals
‘temp’+1, which indicates that only one atomic opera-
tion has been performed, the message can be send to
the channel in the next line, and the value of variable
‘to_write’ can be updated to complete one message send-
ing. If the value of variable ‘write’ is not equal to ‘temp’+1
at this point, it means that other threads have also made
atomic updates, this producer should reduce the value
of the variable ‘write’ by an atomic update, let the ‘write’
value revert to the state in which it was before this pro-
ducer accessed. This send can be considered a failure,
and it is done again from the beginning. In this way, it
is ensured that when multiple producers send data to
the channel, at most one producer can find that after an
atomic operation, the value of variable ‘write’ is equal to
the value of variable ‘temp’+1, and other producers will
fail. Thus, the synchronization of messages in the chan-
nel is ensured.

Although the synchronization mechanism on CPE
can also ensure that data will not be overwritten or be
read repeatedly, it is more complex than the CAS opera-
tion on MPE and has the possibility of invalid operation,
so performance loss is higher than that of MPE III.

Different modes of channels
Although using the synchronization mechanism can en-
sure the correctness of the messages in the channel, it
will also result in decreasing communication efficiency.
Therefore, in order to maximize communication ef-
ficiency, this paper designs different communication
modes for different numbers of producers and consum-
ers. Different modes can be chosen according to the ac-
tual needs to maximize the efficiency of communication.
There are four modes in total:

Single producer-single consumer: only one producer
and one consumer. In this case, there is no synchroniza-
tion, and efficiency is the highest.

Single producer-multi consumer: only one producer,
but multiple consumers. In this case, the consumer read
buffer needs to be synchronized, but the producer can
send messages directly.

Multi producer-single consumer: multiple produc-
ers, but only one consumer. In this case, the producer

write buffer needs to be synchronized, and the consumer
can receive messages directly.

Multi producer-multi consumer: multiple producers
and multiple consumers. In this case, both the reading
and writing of the buffer need to be synchronized, which
is also the default mode of the channel.

Blocking and wakeup mechanism of channel
In the process of communication, sometimes the pro-
gram wants to communicate but cannot communi-
cate normally, for example, the producer cannot send
a message when the channel is full. In such a case, the
program has no choice but to wait. When it is imple-
mented in multi-threaded mode, the mechanism of cy-
clic access or thread switching can be chosen. However,
thread switching consumes many system resources,
which will lead to performance degradation. But for the
program based on coroutines, the switching consumes
less resources, I choose to let the coroutine block and
switch when the communication cannot be carried out.
If a coroutine is blocked and switched off the running
queue, other coroutines continue running, which re-
duces the time cost for waiting. When a producer sends
messages to the channel, it will first determine wheth-
er the channel buffer is full. If it is not full, it will send
a message and continue to run. If it is full, the message
cannot be sent, and the producer coroutines will enter
a block, and the executor will transfer the execution di-
rectly to other coroutines to run. The blocked coroutine
will be recorded on the waiting queue of the channel.
The blocked coroutine does not wake up automatically
or is awakened by the executor, but it wakes up when
a consumer takes a message out of the channel so that
the channel is no longer full. At that point, the blocked
coroutine returns to the running queue to continue
running, and has a high probability to send messages
successfully. Similarly, when the channel is empty, the
consumer coroutine will also be blocked and awakened
by a producer coroutine. This kind of mutual wake-up
mechanism allows a program to directly give up the ex-
ecution in the case of inability to communicate and let
other coroutines run instead of waiting in a loop. It also
does not consume a lot of system resources as in the case
of thread switching, and effectively uses the operation
ability of the processor.

163

Singh, A. (2020). Communication coroutines for parallel program using SW26010 many core processor. Intercathedra 3(44), 157–164.
http://dx.doi.org/10.17306/J.INTERCATHEDRA.2020.00104

EXPERIMENTAL RESULTS AND ANALYSIS

Performance test of channel
In order to understand the specific performance of chan-
nel communication, it is necessary to test the operation
performance of the channel under different conditions.
Since a channel has different modes, which will affect
the competition between producers and consumers, the
situation was tested with and without competition, on
MPE and on CPE. The used message data is an integer,
with an average of multiple send times as a result.

It can be seen that the communication efficiency of the
slave core is loir than that of the main core, and the per-
formance degradation is more serious when the multi-
core competes. From the results i can draw a conclusion
that the more producers or consumers compete, the more
serious the communication efficiency degradation is.

There are two reasons why the communication effi-
ciency of CPE is loir than that of MPE. First is that the
speed of accessing the main memory from CPE is loir
than that of MPE. Second, the synchronization mecha-
nism on CPEs can cause much more decrease of efficien-
cy when producer or consumer increases. More process-
es competing, higher the probability of invalid operation,
then the average communication time increases.

CONCLUSIONS

In this paper, i have designed the producer-consumer
mode inter-core communication based on the coroutine
implementation on SW26010 processor. For the chan-
nel mode communication that suitable for both MPE
and CPE, i have designed the data structure based on
ring buffer, the synchronization mechanism based on
different atomic operations of MPE and CPE, and the

mechanism of mutual wake-up between producers and
consumers, so that the security and efficiency of com-
munication are guaranteed. At last, i test and analyse the
performance of channel in different numbers of pro-
ducers and consumers, draw the conclusion that when
the number of producers and consumers increases, the
channel performance will decrease.

This study provides an effective communication guar-
antee for the implementation of the coroutine on SW26010
processor, provides an efficient communication interface
for the development of upper application, and improves
the efficiency of program execution, and explores the
communication capability of SW26010 processor.

REFERENCES

Bailes, P.A. (1985). A low-cost implementation of coroutines
for c. Softw. Pract. Exp., 15(4), 379–395.

Bergauer, H., Jeitler, M., Kulka, Z., Mikulec, I., Neuhofer, G.,
…, Taurok, A. (1996). A 1-ghz flash-adc module for the
tagging system of the cp-violation experiment na48. Nucl.
Instrum. Methods Phys. Res., 373(2), 213–222. https://doi.
org/10.1016/0168-9002(95)01521-3

Duan, X., Xu, K., Chan, Y., Hundt, C., Schmidt, B., …, Liu, W.
(2017). S-Aligner: Ultrascalable Read Mapping on Sunway
Taihu Light. IEEE International Conference on Cluster
Computing. IEEE.

Fang, J., Fu, H., Zhao, W., Chen, B., Yang, G. (2017). swDNN:
A Library for Accelerating Deep Learning Applications
on Sunway TaihuLight. 2017 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS)
(pp. 615–624). Orlando: IEEE. https://doi.org/10.1109/
IPDPS.2017.20

Feldman, S., Dechev, D. (2015). A wait-free multi-producer
multi-consumer ring buffer. Acm Sigapp Applied Com-
puting Review, 15(3), 59–71.

Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., …, Yang, G. (2016).
The sunway taihulight supercomputer: system and appli-
cations. Sci. China Inf. Sci., 59(7), 072001 (2016). https://
doi.org/10.1007/s11432-016-5588-7

He, Z. (2012). On algorithm design and programming model
for multi-threaded computing. Dissertations & Theses
Gradworks.

Hui-Ba, L.I., Yu-Xing, P., Xi-Cheng, L.U. (2008). A program-
ming pattern for distributed systems. Computer Engineer-
ing & Science.

Michael, M.M. (2003). CAS-Based Lock-Free Algorithm for
Shared Deques. Euro-par Parallel Processing, Interna-
tional Euro-par Conference, Klagenfurt, Austria, August.
DBLP, 651–660.

Table 1. Channel communication performance with different
numbers of producers and consumers

Time (μs) 1(μs) 10(μs) 32(μs)

MPE send 0.13 0.22 0.22

MPE receive 0.12 0.23 0.22

CPE send 1.37 30 457

CPE receive 1.95 54 791

Singh, A. (2020). Communication coroutines for parallel program using SW26010 many core processor. Intercathedra 3(44), 157–164.
http://dx.doi.org/10.17306/J.INTERCATHEDRA.2020.00104

164

Pauli, W., Soffa, M.L. (1980). Coroutine behaviour and imple-
mentation. Softw. Practi. Exp., 10(3), 189–204.

Wang, X., Liu, W., Xue, W., Wu, L. (2018). swSpTRSV: a fast
sparse triangular solve with sparse level tile layout on sun-
way architectures. In: PPoPP ‘18: Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming Acm Sigplan Symposium (pp. 338–
353). New York: Association for Computing Machinery.
https://doi.org/10.1145/3178487.3178513

Xu, X., Li, G. (2012). Research on coroutine-based process
interaction simulation mechanism in c++. Asia Sim., 3,
178–187.

Zhangdun, T., Shuyu, C., Yao, L. (2012). Research and imple-
mentation of high-performance ring buffer. Computer En-
gineering, 38(8), 228–231.

KOMUNIKACJA MIĘDZY KORUTYNAMI DLA PROGRAMU RÓWNOLEGŁEGO
Z WYKORZYSTANIEM WIELORDZENIOWEGO PROCESORA SW26010

Abstrakt. Komunikacja między programami równoległymi jest nieodzowną częścią obliczeń równoległych.
SW26010 to heterogeniczny, wielordzeniowy procesor używany do budowy superkomputera Sunway Taihu
Light, który jest dobrze przystosowany do obliczeń równoległych. Aby zaprojektować i wdrożyć korutyny na
procesorze SW26010 i poprawić jego współbieżność, bardzo ważne i konieczne jest osiągnięcie komunikacji
między korutynami. Dlatego w niniejszej pracy zaproponowano system komunikacyjny do wymiany danych
i informacji pomiędzy korutynami na procesorze SW26010, który składa się z następujących części: projek-
tu i implementacji komunikacji kanałowej w trybie producent–konsument na podstawie buforu pierścienio-
wego oraz mechanizmu synchronizacji dla stanu multiproducent i multikonsument, bazującego na różnych
operacjach atomowych na MPE (management processing element) i CPE (computing processing element) pro-
cesora SW26010. Zaprojektowano również mechanizm budzenia pomiędzy producentem i konsumentem,
który redukuje czas oczekiwania programu na komunikację. W wyniku przeprowadzonych testów i analizy
wydajności kanału przy różnej liczbie producentów i konsumentów, wyciągnięto wniosek, że przy zwiększe-
niu liczby producentów i konsumentów wydajność kanału będzie spadać.

Słowa kluczowe: korutyny, SW26010, wielordzeniowy, komunikacja równoległa, synchronizacja

