Phytoremediation Applications for Waste
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Summary Macrophytes play an important role in natural and constructed wetlands
(CWs). Their most important function is removal of excessive levels of some sub-
stances, such as nutrients, total suspended solids, trace elements, etc, CWs are widely
used all around the world to treat many types of wastewater, with relatively high
removal efficiency (5-day biochemical oxygen demand [BODs]—around 80 %. total
nutrients —approx. 40 % in the case of domestic sewage). Considering the purpose of
CWs application, a few types were created with several variants in certain environmen-
tal conditions and for many effluent types with various loads of many substances.
Two main types of flow through CWs are considered —surface and subsurface flow.
The latter is further divided into horizontal and vertical flow. The most popular use of
CWs is for domestic and municipal wastewater as secondary and tertiary treatment
stages. Among macrophytes applied for phytoremediation, great diversity of plant
species has been observed, especially native species and a wide range of ubiquitous
species, such as Phragmites australis and Typha spp. Most macrophyte species also
play an important role in natural ecosystems in improvement of surface water quality.
Many species are utilized as indicators of water quality, even when low pollutant levels
oceur, while others are important for phytoextraction or phytostabilization.

Keywords Macrophyte * Constructed wetland * Natural water ecosystems
Nutrient and heavy metals removal

I Constructed Wetlands

Water plants can contribute to removal/absorption of many substances and signifi-
cantly improve water quality, both in constructed wetlands (CWs) and natural water
ceosystems (NWEs). The list of substances removed from the ecosystem is quite
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long, and includes excess concentrations of nutrients (such nitrogen and phosphorus),
organic compounds, suspended solids, various elements (including heavy and noble
metals), and pathogens [1 |. CWs have been becoming more and more common due
to their high removal efficiency and relatively low costs of construction and main-
tenance [2, 3]. Therefore, in rural areas CWs can be used as an alternative to treat
wastewater. Moreover, the growing interest in using CWs can be related to growing
recognition of the natural treatment functions performed by wetlands and organisms
living in these ecosystems, as well as to increasing costs of conventional treatment
systems and to some additional benefits provided by CWs [4]. It has also been
reported that CWs are still not widely used in tropical climates due to a lack of
knowledge and design criteria that are inappropriate for the local weather condi-
tions. These authors also noted that the climate and local conditions strongly
affect the removal efficiencies in constructed wetlands [5]. Hence, there is a great
necessity to investigate possibilities of wider use of CWs.

Constructed wetlands initially were mostly used for domestic or municipal
sewage from separate and combined sewerage [6]. Presently, they are widely used
as small wastewater treatment plants, for purification of storm water runoff [7] or
municipal wastewater {2, 8]. Many investigations have been performed for many
other types of wastewater, such as cadmium-polluted water [9], pulp and paper
industry wastewater [10], highway runoff treatment [11], different land structure
conditions such as mountainous areas 41, petrochemical industries wastewater
[12]. an airport-runoff treatment system [13], dairy effluent [14], pig farm effluent
[15], fish-farm effluent [ 16. 171, horticultural plant nursery runoff [18], agricultural
runoff [19]. textile industry [20], chemical industry [21], tannery industry {22],
landfill leachate (23], and laundry wastewater [24].

Another application of constructed wetlands concerns salt-enriched soils and
water. It is a global level problem due to the assessment that 20 % of agricultural
land and 50 % of cropland in the world are salt-stressed. Around 1% of all plant
species are halophytes that can complete their life cycle in relatively high saline
environments, as much as 200 mM NaCl or more [25]. For the purpose of water
phyto-desalination, salt includers are more suitable if they are able to accumulate
sodium in their tissues and reduce the media’s sodium content and overall salinity
[26]. Shelef et al. [27] found that Bassia indica can accumulate sodium in the
amount up to 10 % of its dry weight, significantly improving water quality.

In the literature there is a discussion on the proper nomenclature for constructed
wetlands. Their other proposed name is “treatment wetlands™ [28]. a term that is
also used in scientific papers. Founder and Headley [29] proposed to use the term
treatment wetlands (TWs) for wetland systems constructed specifically for water
quality improvement for the first time. Moreover, these authors pointed out those
also natural or restored wetlands can provide treatment functions. However, they
proposed in this case to use the name “natural treatment wetlands” to avoid misun-
derstanding. The definition of CWs or TWs can be formulated as a human-made system
to increase natural water system possibilities to improve or balance physical and/or
biochemical processes for further removal of unwanted substances from polluted

water [29]. Additionally. Zhang et al. [30] also proposed the term “engineered
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Morcover, the post-treatment for disinfection may also be needed for pathogen
removal. The primary applications of surlace flow CWs are municipal and domestic
wastewater, animal wastewater, agricultural, and urban runoff [32, 41]. However,
several applications have been investigated for this type of CWs, such as dairy
wastewater, pharmaceutical (including antibiotics) and personal care removals,
improvement of surface water quality, highly polluted rivers, etc. (Table 2). The
important role of surface flow CWs as a polishing step in municipal wastewater
reclamation and its reuse is also emphasized. Investigations revealed that tertiary
free-water CWs have a potential for efficient removal of fecal coliforms. However,
as the authors indicated, the efficiency varied between systems, and further analyses
are required to definitely indicate the possibilities of surface flow CWs in this
process. Anyway, in some cases the water was suitable to reuse after the treatment
in the wetland [2, 59].

The main role of surface flow CWs is removal of excessive amounts of some
compounds and substances. There are however some additional applications, such
as biodiversity conservation in the ecosystem for this wetland as well as for sur-
rounding areas. Esthetic values and biotic regulation are very important aspects of
landscape and nature conservation [60]. Moreover, an occupied area for CWs can be
an important avian area for many important and endangered bird species [61].
Additionally, the removed above-ground biomass with high nitrogen nutrient load
may also be used for composting or energy generation [62], and can be used as
biogas production through fermentation [63].

Several macrophyte species are used in surface flow CWs. The most popular in
many countries is common reed (Phragmites australis Trix. ex Steudel), which is
characterized by very intensive biomass production, absorption of compounds and
substances, as well as by the environmental range of occurrence in natural ecosys-
tems. The usefulness in surface flow CWs of this species was found for such types
of wastewater as municipal, domestic, industrial, pharmaceutical and personal care
product removal, improvement of surface water quality, and highly polluted river.
The second most common plant is the cattail group (Typha spp.), including T. lati-

folia, T. orientalis, and T. angustifolia, which were successfully used in wetlands for
removal of excess substances from municipal and domestic wastewater, pharmaceu-
tical and personal care products, urban sewage, agricultural runoff, polluted river,
and storm water. Also very common is Lemna spp., used for various types of effluents.
Finally, many geographically specific and native macrophyte species are utilized in
surtace flow CWs in various countries with high possibilities for removal of
unwanted substances and relatively high biomass production (Table 2).

2.2  Subsurface Constructed Wetlands

Subsurtace CWs are also widely used in the world. Most of the flow occurs through
the porous media, and most treatment processes take place in this part. In some
systems ephemeral or permanent flooding of the surface of the media can also occur.
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Table 2 Plant species used in surface flow constructed wetlands in various countries and types of wastewater
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This type of CWs is subdivided into horizontal and vertical concerning the flow
direction [64]. Horizontal flow subsurface CWs are the most widely used type in
European countries [6] and are characterized by an inlet and outlet which are
horizontally opposed. The trench or bed contains a medium which supports growth
of emergent vegetation. There are several media used in this type of CWs, such as
different soils, sand, gravel, and crushed rocks, alone or in combinations. There are
also some investigations concerning the usefulness of other media, such as light-
expanded clay aggregates (LECA), zeolite, shale, and industrial sastes, and the
investigators found them to be efficient filter materials [65-67]. The wastewater
comes through the rhizosphere part of plants, and these systems are usually small,
less than 0.5 ha, and characterized by higher hydraulic loading rates than surface
flow CWs. The anaerobic conditions mostly occur low in the media, but the subsurface
zone is saturated through the root system supporting aerobic micro sites adjacent to
roots and rhizomes [29, 31].

The primary pretreated wastewater slowly passes throu gh the media and when it
reaches the outlet is collected before discharge via level control management at the
outlet. A common horizontal flow subsurface CW's is planned with a filtration depth
of 0.6-0.8 m to give an opportunity for plants to grow roots inside the media and
properly penetrate the whole bed and ensure oxygenation through oxygen release
from roots. The amount of oxygen should be sufficient to achieve aerobic degrada-
tion of oxygen-consuming substances in the wastewater. and for nitri fication of the
ammonium. However, many studies have shown that this type of CWs has quite a

| low possibility for nutrient removal due to the system’s inability to oxidize ammo-

i nium, the predominant form of nitrogen in domestic and municipal wastewater, as

well as the low sorption capacity of the filtration medium for phosphorus. Also

harvesting of aboveground plant organs is optional; hence there is quite a small

amount of nitrogen sequestered [68]. However, this type of CWs is sufficient for

removal of organics and suspended solids and fulfils the criteria for small sources of

=it _ i = pollution. The efficiency of horizontal flow subsurface CWs is approximately at the
| level of 40 % for nutrients, and around 80 % for total suspended substances, as well
_ as BOD; and COD [41]. There is a very important role of soil microbes in removing

many substances. As well as soil, enzymatic activity is responsive to the intensity

_ _ and direction of biological activities in CWs. The mineralization of organic matter
is mainly carried out by microbes both under aerobic and anaerobic conditions.

Microbes play an important role in nitrogen and phosphorus removal. Hence, their
role and activities have been more and more thoroughly investigated in CWs [69].
The most common species for this type of constructed wetland is P australis.
However. it is also found that quite often species from the genera Schoenoplectus,
Cyperus, Typha, Baumea, and Juncus are used [29]. P. australis is used very often
in combination with Typha spp. or Phalaris arundinacea. The ran ge of wastewater
types embraces mainly municipal and domestic sewage. There are however some
other uses of these species in horizontal flow subsurface CWs. such as purification
of heavy metal rich wastewater, sulfate rich groundwater, or highway runoff.
Moreover, some other species were also investigated in this type of CWs for possible
removal of excessive substances in pharmaceutical wastewater, urban runoff, dairy
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elfluent, ete. There are several species used m horzontal flow CWs whose range of
occurrence is small; hence they are (ypreal only in some countries (Table 3). It has
also been reported that nuxed vegetation is more effective in pollutant rcn?mv;ll‘ as
compared to stands of single species [84, 85]. However. this subject is still being

discussed and investigated.

Table 3 Plant species used in subsurface flow constructed wetlands in various countries, types of
wastewater. and type of flow direction

Type of F'low '
Plant species wastewater Country Author/s direction
Cyperus alternifolius, | Refining and Kaduna. Mustapha et al. Vertical
Cynodon dactylon petro-chemical Nigeria [70]
company effluent _
Phragmites australis, | Municipal Turkey. Edirne | Cakiret al. [71] Horizontal
Typha spps.. Canna Province
indica |
Phalaris arundinacea, | Mechanically Czech Brezinovi and Horizontal
Phragmites australis pre-treated Republic, Vymazal [72]
municipal sewage | Morina and
Cicenice _
Typha latifolia, Urban wastewater | Haridwar, India | Raietal. {73] Horizontal
Phragmites australis,
Colocasia esculenta
Phragmites australis. | Pulp and paper India. Karur Arivolietal. [10| | Vertical
Typha angustifolia, industry
E. arundinaceus |
Acorus calamus Domestic China Chenetal. |1] Vertical
wastewater
Phragmites spp. Highway runoff Nanjing city. Singh etal. |11} Vertical
treatment | China _
Cyperus alternifolius | Urban wastewater | Sicily. Italy Leto et al. [74] Horizontal
Typha latifolia _ _ ‘
Phragmites australis Sulfate-rich Germany Chen et al, [59] Horizontal
groundwater
Phragmites australis Domestic France Silveiraetal. |75| | Vertical
wastewater
Typha angustifolia Pharmaceutical Singapore Zhangetal. [76] | Horizontal
compounds
Schoenoplectus, Dairy wastewater | East Lansing. Adhikari et al. Horizontal
Tabernaemontani, USA 145]
Bidens comosa L
Phragmites australis Domestic Ain, France Morvannou et al. | Vertical
wastewater [ 771
Phragmites australis Heavy metal-rich | Belgium Lesage et al. [78] | Vertical.

Phalaris arundinacea,

Phragmites australis

wastewalers

Mumicipal sewage

Morina, Czech
Republic

Vymazal ¢l al, 18]

horizontal

Horizontal

(continued)
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Table 3 (contimued)

Plant species

Bassia indica
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Panicum maximum

Typha domingensis

Phragmites australis,
Typha latifolia
Phalaris arundinacea
Phragmites australis

Typha orientalis,
Arundo donax, Canna
Indica, Pontederia
cordata

Vertical flow subsurface constructed wetlands were first designed
units before wastewater treatment in horizontal flow bed
types of vertical flow subsurface CWs. which are categorized
ward flow, upward flow. and combinations of these, which

Iype of
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river water
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The vegetation is always emergent [29]. The system consists of vertical low thi nigh
several beds and discharge via a drain [3] J. The structure of vertical flow CWs

usually comprises a flat bed of graded gravel topped with sand pl

anted with macro

phytes. The size fraction decreases to the top of the bed (from ca. 30-60 mm (o c¢a.

6 mm) to f

acilitate the uniform distribution of applied sewage [29]. Vertical flow

constructed wetlands (VFCWs) are popular when the nitrogen forms contained in
‘astewater have to be nitrified.

In the down flow the system remains unsaturated for most of the time. Pipes

distribute the flow across the surface of the bed. Surface floodin
The bottom layers with coarse media usually consist of

¢ should be avoided.
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drainage pipes. which promote ventilation for passive acration of the substrate.
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removal in one reactor, through ammonia adsorption on the mgt(li'um during the
filling stage. nitrification in acrobic conditions durn.\g the draining phase, and
de-nitrification with anacrobic condition in the next filling stage [Bo). e
Concerning possibilities of application, vertical flow CWs are mostly applied lnr'
municipal and domestic wastewater treatment. There are, however, ma_nlw' nth‘vll
applications, such as salt phytoremediation, highway runc:lt. [‘mlp and paper lllltlll.s‘ll).l
refinery. and petrochemical company effluent (Table 3). hcwl'rul il|)|‘l||L'illIUll’.h of
vertical flow subsurface CWs can be observed. which are especially common in tl?c
USA. Australia, and New Zealand with down flow direction. This system in
European countries is especially useful for achieving the secondary tre.atment of
pre-treated sewage. This system is also more common for removal of higher con-
centrations of ammonium, due to higher oxygen transfer rates. T?l‘e up ﬁf)w vertical
CWs are applied to provide anaerobic conditions. They can be.sul'fm'cntbtor rfzrn:ova!
of total suspended solids and organic compounds. Hf;nce. their applications t'l'lLlI.]f.it.
mining and industrial wastewater. The fill and drain systems can be applied for
wastewater with high oxygen demands or high nitrogen rcmfwal‘ Moreover. due to
lower loss of evapotranspiration they are more suitable in arid regions [29]. '
The vertical flow CWs can provide complete nitrification and p}‘omote the min-
eralization of organic matter [87], but do not provide de-nitrification. It would b‘e
sufficient to use a combined vertical and horizontal CWs system [88]. However, it
requires space and can be costly. There is variation of macroph yte. species usec! for
vertical fiow CWs, beginning with P. australis and Typha spp. a.nd fnch.ldlng various
native wetland species, as well as those whose range of countries is wide (Table 3).

3 Macrophyte Function in Surface Water Quality
Improvement

Natural water ecosystems are a type of sink for surrounding areas; hence elevated
amounts of some elements and substances can be noted. Almost three-quarters gf
water in rivers, lakes, and wetlands are threatened by excessive levels of organic
pollutants and trace elements, which furthermore are also a threat to macrophytes
and phytoplankton [89]. The wetland systems may play a role of natural filters er
the abatement of heavy metals [49]. There is a well-known role qf macrophytes in
removal of excess levels of nutrients [90-92]. Plants can also survive sorr}e conceI‘1—
trations of heavy metals. Some mechanisms have allrcaQy hc?cn d‘escrlhcd. It is
known that plant rhizospheric secretion of various organic acids, aided by pl.u‘r?[—
producing chelating agents, pH changes. and redox reactions, are able to .-ml.ul?lluc
and accu;nulate trace elements at low levels, even from nearly !nsu'.uhlc precipitates
[93]. It is also known that plants tolerant of metal contamination are able 1o segre-
cate toxic elements in the root cortical tissue outside the Clltlntlt‘:‘ml.'f‘ thereby pre-
;enling or reducing translocation to other parts of the plants lL.H |. Using vegetation
to remove, detoxify, or re-stabilize polluted sites has been a widely accepted tool in
developed countries for cleaning such polluted water as it regenerates the original

water permanently [95).
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Hleavy metal accunulation varies between plant species and ever Mnong moi
phologically similar species growing in the same arca [96], Most of them have o
toxic effect on the plant life cycle and biochemical processes. There is however i
group of trace elements which are necessary for proper plant functionimg, The dual
role etements include zine, copper, and nowadays nickel, which are necessary lon
many metabolic/biochemical processes, including enzyme activity. Hence, some
amount in the environment is necessary, while an excess can resull in a negative
plant response, including faster sencscence and lower growth. Other heavy metals.
such as cadmium, chromium and lead. are non-essential and extremely (oxic (o
plants even at low concentrations. Moreover, there has also been observed i synes
gistic effect of several trace elements on plants, such as Cd and Pb [97]. It is 1ot
lant to recognize macrophyte species with higher efficiency to tolerate or even
resistant to elevated concentrations of heavy metals in the water and sediment, A
plant which accumulates higher levels of the contaminant in its harvestable sections
(leaves and stems) is considered as a good candidate for phytoextraction, while a
species which restricts the accumulation to its roots will be useful for stabilization
of the contaminated environment, reducing human health and environmental hav
ards by a different and protective strategy, which is called phytostabilization [98]

Several investigations have proved that many species of macrophytes revealed
features of phytostabilization in their natural habitat, which is very umportant [rom
a practical point of view, due to possibilities of their usefulness while avotding
depletion of a specific plant population [99]. Moreover, phytoextraction can be very
worthwhile, because some species have been proved to remove and translocate (o
above-ground plant parts some precious metals, such as gold. under certain circunm
stances [99]. Knowledge about the accumulation properties of wetland plant species
is useful in choosing appropriate plants for wetland phytoremediation systems,
There have also been conducted investigations confirming the water cleaning abili
ties shown by littoral plants, which can keep heavy metals away [rom bank zones
and can protect water against human pressure on the bank zone. Littoral plants can
be used as heavy metal bioindicators and/or as buffers against the spread of heavy
metals over large areas in a freshwater environment. Besides the important role of
macrophytes as accumulators and cleaning functions in the case of high trace ele
ment concentrations, they can also indicate the level of water contamination ¢ven
when low concentrations occur [100, 101].

Investigations concerning possibilities for use of macrophytes in removal o
trace elements from the environment are widely conducted, using plants naturally
grown in water ecosystems as well in constructed wetlands. There are however
many doubts concerning translocation of elements in plant bodies. Studying (he
range ol macrophyte species revealed the high possibilities of accumulation and
wide range of trace element translocation among plant species. Some INVestigalors
also suggest that mobility of clements in a plant is closely related (o concentration
ratios between certain trace elements (Table 4), Regarding uptake and translocation
issucs of trace elements, 1 ig alao wnportant to remember that (his depends on physi
cochemical  proceases, such e metal solubility,  water  temperature,  and
pH. Temperatre and pll iy chinnge i both o spatial and o wmporal manner,

Scasonal changes mercase thie pb 0o decrease the metal solubilin [116]



Table 4 Plant species and their accumulation potential in plant orga

Plant species

Typha angustata L.

Phraemites australis

Spartina alterniflora,
Phragmites australis

tes australis

hraemites australis

sroni PeCtinatus.

fum

sraemites australis,

rundinaceda

folia,
Phraemites australis

G

Dhraemites australis.

srundinacea, Carex

remoia, Calamagrosiis

epIgelos

i \p”

australis

ifolia,

tes australis

australis,

et .\-,‘r'f;’.-ﬁxi

ceton natans, Iris
corus. Phalaris

pectinatus

| Country
| India

Belgium

USA

Portugal

. Turkey

[taly

Ttaly
Poland
Czech

| Republic
China

. Poland

USA
| Sweden
Turkey

Slovenia

. Czech
Republic

Turkey
taly

| Poland

Trace elements

" Mn. Cu. Zn, Cr. Ni. Pb

Al, Cd. Cr. Cu. Fe. Mn.
Ni. Pb. Zn
Hg. Cu, Zn. Cr. Pb

Zn

Pb. Cr. Cu. Mn. Ni. Zn,
Cd

| Cu. Zn. Ni, Cr

Cr. Cu. Fe. Mn. Ni. Pb.
7n

| Cd, Pb. Zn

Cu. Cr.
" Pb.Zn

. Al Ba, Cd, Co, Cr, Cu,
Fe. Mn. Ni, Pb. Sr. Zn

Cu, Zn, Pb, Cd, Fe

Cd, Cu, Zn, Pb, As

Cd. Pb. Cr, Ni. Zn. Cu

| As, Ni, Pb, Cr

' Al Fe. Mn. Ba. Zn. Cd.
Hg

Zn.Mn. Cr
Cd, Cr, Cu. Hg. Mn.

Ni, Pb. Zn
Cd. Pb. Zn. Cu

ns for trace

Organs with higher accumulation,
translocation or elements mobility

Roots

Belowground parts. except Mn

Hg. Cr higher in leaves of S.
alterniflora

Cu. ZN higher in leaves of £
australis

Roots. poor translocation

: Root accumulation except Cr

Similar or higher accumulation in
leaves
Except Zn. higher levels in roots

Transport to leaves

Roots as a filter for trace elements
Translocation from roots to shoots

Only leaves were measured.
Elevated level of Cd. Co, Cr. Cu.

Mn

Transport of Pb and Zn to
aboveground parts

Most plants keep elements in roots,
except Salix sp.

High translocation of all elements.
however F. pectinatus transported

| much higher Zn to leaves
Pb stays in roots, Ni relatively high
mobility to upper parts of N. lutea

Small mobility of Cd, while very
high mobility of Zn

High Zn mobility to above parts of
plants

High accumulation in all plant
organs

I. angustifolia revealed higher Cd
translocation potential than P
australis. Ph and Cd stayed in
rhizomes. Zn mobility

elements in various countries and types of wetlands

Type of ecosystem
Constructed wetland
Constructed wetlands

Contaminated low

marsh

Contaminated soil

Lake Sapanca

Constructed wetland

Volcanic lake

River Przemsza

Natural and
constructed wetlands

Six wetlands

Anthropopgenic lakes

Constructed wetland
for landfill leachate

| treatment
Submerged tailings
impoundment

Natural wetland

| Artificial lake

Constructed wetlands
for treatment of

- municipal wastewater
Steam carrying
secondary effluent
Mouth area ol the
river
Natural and artificial
lakes

Autbor/s
Bose et al. [102]
Lesage et al. { 78]

. Windham et al. [ 103]

. Marques et al. [98]

Duman et al. |96]

Bragato et al. {49

Lewander et &l

Vymazal et ak [

Deng ot al. [ 10

Samecka-Cyr
and Kempers

Peverly et al. [108]

Stoltz and Greges

Demirezen and Akson

[110]

. Mazej and Germ

Vymazal et al. [ 112

Sasmaz et al.

Bonanne and 1. Ga
j114]

Drzewiecka et al
[100], Drzew
etal. [101].

etal. [115]

Baldantoni et al. | U=
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An important issue in using macrophytes in CWs s (O |’c||1&~|||lx"|' ;||‘mul the pc’rmd
of acclimation to certain loads of treated wastewater. such as a feeding day with a
new type of wastewater prior to starting a real dose. Low h[l'(:llgllll wusl-t-\\e'uilcr was
provided [117]. It is important to use native plants of the mnl;nnm‘ulcd site for phy-
toremediation because these plants adapt better in terms of sur\fwal. growth, un‘d
reproduction under environmental stresses than those 1|?{mdvuccd 1‘mm another envi-
ronment. There has been continuing interest in searching for native plants that are
tolerant of heavy metals. P. australis is the most widely distlrlbmedh wetland plant
species throughout the world. Moreover, it is known that this species grows ver}f
well in unpolluted ecosystems, as well as in polluted ones, e.g., t{y ]1e.avy metals. As
mentioned before, this species is widely used as a main species tpr cqnst.ructcd
wetlands. Moreover, several investigations have revealed the capacity of this spe-
cies for removal of many trace elements from natural water ecqsystems: P. a»fstralzs
is not a hyperaccumulator; however, due its high growth ratio and high bloqlass
production, deep root system and tolerance to higher trace ele{ment concentratlgns
in the environment, it can be treated as a plant for reduction of metgl concentration
in soils. sediments, and waters in natural and constructed wetlands [49].' e

Several investigations confirm its role as a great accumulator and bioindicator
and its removal p:}[ential for both natural water ecosystems and (fonstructed wgt-
lands all around the world. However, various results were obtained concerning
mobility/translocation of heavy metals from below- to apovejground plant organs.
This discussion concerns especially the mobility potential of Cd and Pb. wl.ul.e. in
the case of zinc most investigations indicated a high translocation poss@nl}ty.
Possibly this is also connected with the dual role of this element and association
with the concentration of other elements in the environment, such as Cu FTable 4).
Other common species in natural water ecosystems are Typha an:qusujo!.'.a and
Typha latifolia. Both species are already also well known as successful plants urrcd
in constructed wetlands as removal plants for heavy metals, such as Pb/Zn mine
tailings. These species are resistant to stress factors in H?e golluwfl enwmnmepl and
have the capability to accumulate heavy metals in their tissue from cumammgt_ed
wastewater [118]. Typha angustifolia is a perennial macrophyte that .has an ah?hty
to produce large amounts of biomass and can grow rapldly. [.l 19]. The investigations
in natural ecosystems revealed that Typha spp. has the ability to e.xtra.ct Pb, Cd. Cr,
Mn. and Fe from their water surroundings [120]. Recent investigations based on
calculation of the accumulation factor and translocation factor le.d. to l'he conclusion
that this species would be most appropriate for use in phytos.tablhzauon [12.1]. .

The above-mentioned macrophyte species are the most widely used a‘nd investi-
oated. However, several other species are widely used, and their capacity for removal
gf excessive levels of many compounds and substances is alsoh highly evaluz_lt.ed.
Hence, it is extremely important to keep natural water ecosystems in a good C(‘mdltl().n
in order to maintain the state of our environment and health, as well as for their
esthetic values.
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