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Six regularly packed beds (simple cubic, orthorhombic I and I, tetragonal sphenoidal, and rhombohedral I and I1),
treated as unit cells made of monosized spheres, were analyzed. A formula to calculate permeability of such beds at
creeping flow conditions was proposed. It is based on similar assumptions as the Kozeny-Carman equation, but instead
of mean porosity and tortuosity, their local values were taken into account. Two different values of the pore shape factors,
regarding triangular and square pores, according to Boussinesq, were applied. The new formula, in its integral form,
agrees better with experiments than those given by Slichter, Kozeny and Carman, Martin et al. as well as Franzen; it

1. INTRODUCTION

Fluid flows in beds and other porous media commonly
occur in nature and are widely applied in engineering as
well. They are the main topic of hydrogeology, petroleum
engineering, etc. In environmental and chemical engi-
neering, packed columns are used to perform separation
processes, such as absorption, filtration, and stripping.
The interaction between fluid and the porous medium is
relatively well recognized in the simplest cases of a creep-
ing flow in straight capillary tubes and in isotropic media.
However, there are still many problems to be solved un-
der more complex conditions using both analytical and
numerical methods. One of them is a flow through a bed
made of stacked spheres. It is known that spheres can
be arranged in many regular packings. These arrange-
ments were classified by Bravis as 14 lattices to deter-
mine crystal structures in three dimensions. They are also
used as models of porous media made of spherical grains,
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underestimates the analyzed packings’ permenbilities by less than 22%, on average by 13%.

KEY WORDS: seepage, periodic arrays of spheres, low Reynolds number

thanks to their simple geometry and ease of its mathe-
matical description. One important feature of the major-
ity of these arrangements is their anisotropy, which in-
fluences vector-dependent properties. As will be shown,
the existing semi-empirical and theoretical formulae pre-
dict permeability of six basic sphere arrays (simple cubic,
orthorhombic I and II, tetragonal sphenoidal, and rhom-
bohedral I and II; see Table 1), with unacceptable errors,
except the one by Martin et al. (1951), which however
is—at least partly—an empirical relationship only.

Such translationally invariant arrays of monosized
spheres are attractive both from the practical and theoreti-
cal point of view. They may serve as special cases of more
complex arrangements to check the validity of different
mathematical models, particularly the correctness of their
assumptions. Our goal was to elaborate a simplified math-
ematical model describing permeability and head losses
during Newtonian fluid flow through regularly packed
beds at low Reynolds numbers (Reg = pUd/p < 1).

731

IF =053

A e ZO14



732 Blazejewski & Murat-Blazejewska
NOMENCLATURE

A base cross-sectional area of unit cell orcross R,  hydraulic radius, m
section of empty, very large tube, m? Req = pUd/u Reynolds number

Ao. ratio of the part of the tube cross-section area S, volumetric specific surface, m?/m?

(unit cell) per one porous channel to the T = L./ L tortuosity
square d x d area U = g/ A superficial velocity, i.e., average velocity

Ap pipecross-secnonalareaorpom areaina of fluid based on the cross section of
given cross section of unit cell, m? empty, very large tube, m s~*

b number of layers which are cut by a plane Ua average interstitial velocity of fluid or mean
passed through the bed perpendicularly velocity in an equivalent capillary tube, m s™*
to the main flow axis (b= 1 or 2) o« = A,/ A surface porosity in a given cross

Co pore shape factor section of unit cell

d particle diameter, m [ angle between direction of local path flow

D inner diameter of capillary tube, m and the macroscopic flow direction, deg

g acceleration due to gravity, m s~2 Sk, relative error of k., %

H head loss along a unit cell, m of fluid column  §x,, mean absolute error of x,, %

Ha = d*/x Hagen number — relative hydraulic £ voidage (volume porosity)
resistance X permeability, m?

k pipe shape characteristic by Boussinesq Ky = x/d? relative permeability

ke =1/c, T dynamic viscosity of fluid, kg s‘l

L depth of unit cell, m v kinematic viscosity of fluid, m? s~

L.  average effective path length of fluid ina p fluid density, kg m~3
unit cell, m Xp wetted perimeter of pipe or spheres in a

q flow intensity, m® s~! given cross-section of unit cell, m

2. PREVIOUS STUDIES

Slichter (1899) developed a formula for velocity of fluid
seeping through pores in regularly packed beds made of
identical adjoining spheres. He determined a relationship
between the volumetric porosity and the acute angle at
the rhombic basis & (Fig. 1), for a tetragonal sphenoidal
(8 = m/3) till a simple cubic packing (5 = 7/2) as well
as a relation between the angle § and minimum surface
pomsity‘hwnalsoasaﬁwionalﬁ'eeam(Mminet
al., 1951) or an area porosity (Denys, 2003). The values
of the studied porosities lay within the following ranges:
0.0931 € Otmin < 0.2145 and 0.2595 < ¢ < 0.4765.
Slichter assumed that an equivalent pore has a minimum
cross section. The model of that type is called [according
to Bear (1988)] a capillary tube model. The final formula
for the dimensionless permeability reads

a?nin
96 (1 — €)

== ()

where: x — intrinsic permeability, d — particle diameter,
Onin — Minimum surface porosity, € — volume porosity.

The advantage of Slichter’s approach is there is no
need for empirical coefficients.

Note that the volume porosity is just a surface porosity
(fractional free area), averaged over bed depth L. Numer-
ical values of the minimum surface porosity are close to
the values of the mean surface porosity as well as the vol-
ume porosity (Xmin = gy = €) at a randomly dispersed
(without any influence of the tube walls) arrangement of
particles only.

Another capillary tube model, often used in porous
media hydraulics, was developed by Kozeny (1927) on
the base of an analytical solution of the Navier-Stokes
equations, later on modified by Carman (1937). It allows
estimation of the permeability using the following for-

-Fora(E)

" mula (Dullien 1979):
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TABLE 1: Basic regular packing arrangements of spheres
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Note: Body centered cubic (BCC) packing is also known as rhombohedral II

FIG. 1: Top view of spheres investigated by Slichter

(1899)
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where ¢, — pore shape factor, £ — volume porosity and S,
— specific grain surface area per volume of solids, L./L
=T > 1 - tortuosity.

Kozeny (1927) gave ¢, values for different capillary
tube cross sections: 0.5 (circle), 0.562 (square), 0.597
(equilateral triangle), and 0.667 (thin slot) using theoreti-
cal results obtained by Boussinesq (1868, 1914). Boussi-
nesq derived them (fr. caracteristiques de la forme) for a
laminar (potential) flow in prismatic pipes as

A Ry
k=co—F =co— 3)
X3 Xp

where A, — pipe cross-section area, X, — wetted perime-
ter of the pipe, R) — hydraulic radius, and obtained the
values: k = 0.0397 (circle), 0.0351 (square), and 0.0288
(equilateral triangle).

For solid, randomly packed spherical grains Carman
(1937) introduced into Eq. (2) ¢,(L/L.)? = 0.2, derived
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from empirical data, as well as S, = nd?/(nd®/6) = 6/d
and obtained the well-known formula for the dimension-
less permeability, valid for € < 0.5:

3

K [
@ 180(1 - ¢) @

It can be seen that formula (4) considers the vol-
ume porosity only. Taking the average tortuosity 7, =
L./L = /2 - m2 = 1.414-1.57] as suggested by Car-
man for granular, randomly packed beds, one obtains c,
= 0.2 (L./L)?* = 0.400-0.494, which is close to the value
adequate for a circular section of a representative pore
(e, = 0.5). However, the value accepted by Carman for
“a narrow rectangular channel” k, = 1/¢c, = 1/0.4 = 2.5
was rather too high, as for a thin slot Kozeny (1927) sug-
gested k, = 1/0.667 = 1.5 instead of 2.5. In the well-
known Ergun equation the constant 180 in the first right-
hand term (based on the Blake-Kozeny equation for the
creeping flow) is replaced by 150. Recently, Wu et al.
(2008) have suggested that the numerical constant is pro-
portional to the bed’s tortuosity and should be taken as
72 T,, which for granular, randomly packed beds may
give values even lower than 150. The applicability of the
last approach was confirmed by Schiavi et al. (2012). An-
other interpretation of the Kozeny~Carman constant—in
terms of the fractal geometry—was proposed by Xu and
Yu (2008) That concept is however not relevant to the
seepage under saturated conditions in packed beds made
of monosized spheres due to the lack of different scales
of their structures It would be applied to solve some other
problems, e.g. a percolation of fluid discharging from a
point source and percolating through an array of regularly
stacked spheres, which are beyond the scope of this paper.

Martin et al. (1951) showed that in the case of regu-
larly packed beds made of spheres the flow direction is
very important, as, e.g., the orthorhombic I packing with
the same & = 0.3954 as the orthorhombic I packing, has
almost six times higher resistance to flow than the lat-
ter one. They investigated nine regular arrangements of
spheres at Re; = 0.5-10,000 and hypothesized that “In the
case of stacked spheres ¢ may be thought of as the frac-
tional free area of infinitesimal bed depth dz, as well as
the fractional void volume over a finite height” A New-
tonian fluid, seeping at superficial velocity U through a
bed of depth L, made of stacked spheres of diameter d,
creates the following pressure drop (Martin et al., 1951):,

2Lp 1 (51—’
Ap= szsz (5)
0

a?
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where b — number of layers which are cut by a plane
passed through the bed perpendicularly to the main flow
axis (b=1or2).

It can be seen that in Eq. (5) volume porosity function
f(€) from Eq. (4) has been substituted by a similar func-
tion of surface porosity f(a).

The hydraulic gradient can be then expressed in the
following dimensionless form:

- Ap _22VU1
T pgLl  gd? L

Fot(1 )?
/ (“3“ dz  (6)
0

From Eq. (6) one can calculate the relative permeability
as follows:

L Lb‘(l )? b
K - 0
0

Franzen investigated fluid flows inside small channels
imitating pores inside regularly packed beds of spherical
beads (1977, 1979a) and the beds themselves (1979b) to
determine the influence of the pore geometry on the pres-
sure head loss. Six different types of packing were stud-
ied (Table 2); three of them were of cubic type and three
of rhombic type in the middle of the unit cell depth [see
Fig. 2(b)).

From data in Table 2 it can be stated that the orien-
tation does not affect the volume porosity but it affects
the surface porosity significantly. Franzen (1979b) inves-
tigated packed beds consisting of 14 layers of spheres of
diameter d = 10 mm, within the Reg = 0.5-1000. On the
basis of the Hagen-Poiseuille equation

32 U

where L, — average effective path length equal to the
length of an equivalent capillary tube, U, —average veloc-
ity in the equivalent capillary tube of diameter D, with his
own empirical correlation for the creeping flow (Reg < 1)
conditions, Franzen (1979b) found

(8)

x _ eSA7,
d? 143.2

where A,. —ratio of the part of the tube cross-section area
(unit cell) per one porous channel to the square d x d area
(v/3/4=0.433 < Ay, < 1.0); for random packing Ag. =
0.716.

)
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TABLE 2: Basic characteristics of packings investigated by Franzen (1979b) and values of the Hagen numbers Ha

Type of packing Volume | Surface| Mean | Relative | Empirical | Calculated | Error
porosity| poros- | tortu- | area values of | values of in
€ ity osity Ao. Ha for Ha=d?/x | Hap %
Qmin Ta Reg < 1 according
[ A at 20°C to Eq. (9)
Simple cubic SC 0.4765 | 0.2145 .0 1 420 436 +3.8
1.0
Orthorhombic I OR 11 0.3954 | 0.2145 | 4/3 1 600 576 -4.0
0.6355
Rhombohedral I BCC 0.2595 | 0.2145 | /3 1.0¢° 4400 1083 ¢ 754
_l 0.3494 0.5°% 4333 % -1.5
Orthorhombic IOR 1 0.3954 | 0.0931 | 1.0 V3/4 3400 3072 -9.7
1.0
Tetragonal-sphenoidal TS 0.3019 | 0.0931 | 4/3 V3/4 4300 4604 +4.6
0.5791
Rhombohedral [ (aba...) RHI | 0.2595 | 0.0931 | 1.5 V3/4¢8 5300 5777 ¢ +9.0
0.4565 V3/2¢ 1444 © 72.8

“ For one porous channel per d? at a section in the middle of a layer of spheres.
® For two (4 x 0.5) porous channels at sections laid 8 "%®d above and below the middle of a unit cell [see Fig. 2(a)).
© For one porous channel at sections laid 6% d above and below the middle of a unit cell.

NN

N

FIG. 2: Cross sections of rhombohedral packings: (a) BCC at section laid 8% d above and/or below the middle of
the unit cell and (b) RH I at section in the middle of the unit cell depth :

Franzen introduced a dimensionless similarity num-
ber Ha (Hagen number) which is a reciprocal of the di-
mensionless permeability, i.e., Ha = d?/x, which can be
interpreted as a dimensionless resistivity. A comparison
of the calculated and empirical values of the dimension-
less resistivity is shown in Table 2. It can be seen that
the values of Ha correspond well to each other (relative
error < +10%), provided that for the rhombohedral 11
(body-centered cubic, BCC) arrangement Ag. = 0.5 in-
stead of 1.0 is used, typical value for cubic packings and

Volume 17, Number 8, 2014

pores in the shape of diamond ({) or four-pointed star.
Franzen noticed that at sections laid 8 %° d = 0.354 d
above and below the middle of a layer there are two (4
% 0.5) porous channels of diamond-shaped cross section
in a unit cell [Fig. 2(a)]. Franzen’s observation that in the
rest of the packings the number of enclosed pore cross
sections is identical to the number of pore openings in
the upper sphere layer is not correct, because in the case
of RH I, there are two openings (enclosed pores) in the
upper sphere layer and only one enclosed pore (denoted
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in gray color) in the middle of the cell [Fig. 2(b)]; there- Larson and Higdon (1989) analyzed creeping fluid

fore, one should take doubled Ag. = 2,/3/4 = \/3/2 =
0.866 Ag. = (\/3/4)2 = \/3/8 = 0.217 instead of /3/4
= 0.433, which leads to a relatively large error in Ha =
d®/x equal to —72.8% (Table 2) and even much greater

in x/d?, equal to 266% (Table 3).

flows through three cubic arrays [simple cubic (SC),
BCC, and face-centered cubic (FCC)] of solid spheres
by using a numerical collocation method based on a set
of expansion functions for the solution of Stokes flow in
terms of Lamb’s equations in spherical coordinates. Their

TABLE 3: Values of permeability and their relative errors related to the values estimated from Franzen's (1979b)

experiments.
Authors of Dimensionless permeability x, of packings of spheres
experimental data
Sphere diameter SC ORIl BCC ORI TS RH1
Martin et al. (1951)
d=079cm 4.0-10% | 2941073 | 3.02-10~* | 4.39-10~* | 3.83-10~* | 3.02-10~*
d=159cm 9.88-10~% | 7.25-10~% | 7.46-10~5 | 1.08-10~* | 9.46:10~5 | 7.46-10°
recalculated for 2.50-10~3 | 1.83-10~2 | 1.89-10~% | 2.74-10~* | 2.39-10~% | 1.89-10~*
d=10cm
Franzen (1979b) 2381073 | 1.67-1073 | 2.27.10~* | 2.94.10~* | 2.36-10~* | 1.89-10"*
d=1.0cm
Dimensionless permeability x, of packings of spheres of d = 1.0 cm
Authors of equation Eq. Relative error 5x,, %
Mean absolute error 8k, = } i 18K
=
9.16-10* - - - 1.29-10~* -
Slichter (n —61.5 —45.3
53.4% (for SC and TS only)
2.19:-107% | 9.40-10~% | 1.77-10~* | 9.40-10~* | 3.14-107* | 1.77-107*
Kozeny—Carman 4) -8.0 —43.7 -22.0 219.7 33.1 —-6.3
55.5%
2.74-10~3 | 220-10-3 | 1.72-10~% | 2.54-10~% | 2.16-10~* | 1.91-10~*
Martin et al. ) 13.1 317 -24.2 -13.6 -85 1.1
15.4%
2.30-10~2 | 1.74-1073 | 2.28-10~% | 3.26-10~% | 2.17-10~* | 6.92-10~*
Franzen %) -34 4.2 0.4 10.9 -81 266.1
48.9%
2.00-1073 | 1.54-1073 | 2.22-.10~% | 2.32-10~* | 1.96-10~* | 1.63-10~*
This study (13) —16.0 -7.8 -22 =211 —-16.9 —~13.8
13.0%
Stokes-Lamb equations solved | 2.53-103 - 2.94-10~* - - -
by Larson and Higdon (1989) 6.3 29.5
17.9% (for SC and BCC only)
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results concerning permeability of SC and BCC packings
were compared with empirical data and results of our cal-
culations in Table 3.

3. DERIVATION OF NEW PERMEABILITY
FORMULA

We consider a creeping flow (seepage under saturated
conditions) of a Newtonian fluid through unit cells of six
regular packings (Table 1) along the vertical z axis (nor-
mal to each cell’s top horizontal plane). Our basic as-
sumption is that the particle Reynolds number is much
less than 1. A wnit cell is independent of the neighbor-
ing ones. An inspiration for our approach presented be-
low was formula (5) with its enigmatic factor b. Its twice
squared value (b* = 1 or 16) has suggested that by cutting
two layers of spheres one gets a significantly greater wet-
ted perimeter and correspondingly smaller local hydraulic
radius.

Applying the Hagen—Poiseuille law (8), substituting I
for 4R}, , and introducing a local tortuosity T as a function
of z, a head loss along an infinitesimal depth of the bed
Az can be expressed as

v, T
ﬁ o
'En.'?R.h

v U T?

AH =
cga_qﬂz

- Az (10)

where U/, = U - T'/ & — average fluid velocity in an equiv-
alent pore of a given cross-section, Ry, = Ap(z)/xp(2)
= at(2) A/xp(z) — hydraulic radius of the equivalent pore
(Niven 2002); the rest of notations are as under Eq. (3).

Integration of Eq. (10) over the bed depth L gives the
head loss in the form

(11)
Dividing it by L and rearranging
hydraulic gradient
i— _Mi1 f dz
ar.RhE

and the comresponding dimensionless permeability:

Eqg. (11) we get the mean

(12)

The integrals in Eqs. (7) and (13) were calculated numer-
ically using trapezoidal rule.
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For the sake of simplicity the values of pore shape co-
efficients were assumed to be constant and equal to ¢,
= 0.562 for cubic packings (as for square pores) and c,
= (.597 for rhombic packings [as for triangular pores —
see comment to Eq. (3)]. Tortuosity (Fig. 3) and surface
porosity (Fig. 4) were estimated using Franzen’s (197%b)
sketches and peometrical relationships, respectively. In
each of these sketches a central line, normal to the en-
closed pores at inlet to and outlet from a unit cell, as well
as to the enclosed pores inside the unit cell, was drawn in
direction of the main stream (Fig. 5). Mean tortuosity fac-
tor T, was then estimated by summation of the flow path
lengths L. and subsequent division by the depth of the
unit cell L. For example: for BCC and tetragonal sphe-
noidal (TS) T, = (/3/6 + /3/3 + . /3/6) /(/3/2) = 1.333,
A local tortuosity T is interpreted here as the reciprocal
of cosine of the angle B (Fig. 5) between the direction of
a given central line and the z axis. This type of tortuos-
ity can be called, after Sobieski et al. (2012), an overall

33 —b = ORIl

3_‘ F.Y F. +BC'C
—'-rv—TS

T 1 - BRHI1

2.5

S R I a0t

Tortuosity, T
-
o & lv #
![ o It ey

S S R

02 04 06 08 1
Relative depth of unit cell, =L

FIG. 3: Tortuosity of four investigated packings. For SC
and ORL: T = 1.0

0.5

— SC
1 -o— ORI
-a— BCC - half depth
s O I
F
E o
E
‘E 0
@ 02
0
0 0.2 0.4 0.6 0.8 1

Relative cell depth, zid
FIG. 4: Surface porosities of investigated packings
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FIG. 5: Sketches of central lines within unit cells of OR II (a) and RH I (b) packings (adapted from Franzen, 1979b)

(equivalent) hydraulic tortuosity as it represents a rela-
tive length of one equivalent pore passing through a unit
cell. In fact, in some packings there are locally three (in
RH I) or four (in BCC) identical flow paths around a sin-
gle sphere, fortunately with the same tortuosity and the
same hydraulic radii (provided that the pores are iden-
tical) as the single equivalent hydraulic radius. Taking
into account all streamlines, the total tortuosity would be
greater than the general one but there are also some dead
zones within pores which are usually ignored, although
they increase the diffusivity and micro-tortuosity.

4. DISCUSSION

To validate the above presented formulae one has to com-
pare calculated values with the corresponding measured
ones. Such data were provided by several researches;
the most detailed—as far as we know—by Martin et al.
(1951) and Franzen (1979b). The latter data seem to be
more reliable due to better documentation of the experi-
mental conditions. Unfortunately, both sources of empir-
ical data did not provide estimation of uncertainties.

In Table 3 dimensionless values of hydraulic per-
meability and their relative errors (8x, = 100 (K,
Kre)/Kre), Where the lower index ¢ denotes calculated
value and e — experimental data by Franzen (1979b) are
shown. It can be seen that Slichter’s approach underes-
timates the permeability of regularly packed beds (SC
and TS) due to the assumption that the equivalent pore is
that of the minimum cross section. The Kozeny—Carman’s
equation and the corresponding dimensionless permeabil-
ity described by Eq. (4) are not sensitive to anisotropy
(orientation), therefore they give unacceptably high er-
rors for the OR I packing; e.g., 8k, = —220%. Replace-

ment of the numerical constant 180 by 72 T,, suggested
by Wu et al. (2008) has improved the results in the cases
of OR II and BCC packings only. Applying the Yu and
Li formula Eq. (4) in the paper by Wu et al. (2008) for
the tortuosity as a function of porosity, one may obtain
an additional improved result (for RH 1 packing), but still
on average out of all six packings not better than those
delivered by the original Kozeny—Carman formula (4).
The highest discrepancy between calculated and empir-
ical data (8x, = —369%) showed once again the OR |
packing. Much better agreement was obtained using the
semi-empirical Eq. (7) by Martin et al. (1951). Franzen’s
formula [Eq. (9)] is good for all packings except from
rhombohedral I (RH I) with the stipulation discussed in
Section 2. Our results slightly underestimate the pack-
ings’ permeabilities by less than 22%, on average — 13%.
They have occurred on average better than those deliv-
ered by the rest of the analyzed formulae. Even numerical
calculations done by Larson and Higdon (1989) gave a
relatively high discrepancy (relative error 8x, = 29.5%)
in the case of BCC packing. In the case of SC packing
the agreement was much better (8x, = 6.3%), as good as
that obtained by smooth particle hydrodynamic simula-
tions (Holmes et al., 2011).

Our results confirn also the correctness of Car-
man’s (1937) modification of the Blake—Kozeny equation
(Kozeny 1927) consisting in the introduction of 72 in-
stead of T'.

The most probable sources of errors in our model are
simplifications of complex shapes of pores and their tor-

“tuosity. Our simplified procedure of numerical integration

assumes tortuosity patterns shown in Fig. 3 as discrete
(piecewise) instead of gradual ones. A smoothing proce-
dure, as suggested by Sobieski et al. (2012), would im-

Journal of Porous Media
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prove the obtained results. Application of the mean tor-
tuosity 7, instead of the local ones T°(z) gave worse re-
sults in the cases when the latter was not constant over
the cell depth, i.e., for OR II, TS, and RH I packings. The
question: “how to estimate a representative value of tor-
tuosity?” is still open due to complexity of pore geometry
(Duda et al., 2011), even in regular sphere packings. It is
known that in unit cells, apart from the main path, there
are also some other, less significant paths of fluid flow
with different tortuosities. To estimate the hydraulic re-
sistance of regular sphere packings, one has to take into
account the localtortuos:tymhathanmy value averaged
over a unit cell volume.

5. CONCLUSIONS

Hydraulic resistance to creeping flow and permeability of
beds made of regularly stacked spheres depend strongly
on local values of their surface porosity and tortuosity;
therefore, the models based on these parameters averaged
over the bed’s bulk volume may often give significant er-
rors.

Slichter’s approach overestimates head losses at slow
fluid flow through regularly packed beds (SC and TS) and
underestimates their permeabilities due to the assumption
that the equivalent pore is that of the minimum cross sec-
tion.

Franzen’s formula (9) is in fact an empirical one and
ambiguous in interpreting the numbers of openings as
well as enclosed pores in planes normal to the superficial
flow velocity.

A new method to calculate the head loss and perme-
ability of packed beds made of stacked spheres, substi-
tuting the volume porosity by the local surface porosities
as well as the mean tortuosity by its local equivalents, is
proposed. Acceptable agreement with experimental data
by Martin et al. (1951) and Franzen (1979b) confirms the
correctness of this approach.
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