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Coefficient of variation

• The coefficient of variation (CV) being the ratio of the standard deviation to the population
mean is widely used relative variation measure.

• The CV is a dimensionless quantity, which can be expressed in percent.
• This quantity is usually used to compare the variability of several populations, even when
they are characterized by variables expressed in different units as well as have really different
means. In particular, the CV is often used to assess the performance or reproducibility of
measurement techniques or equipments.
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Multivariate coefficient of variation

• For multivariate data, computing the CV for each variable is a common practice, although
this ignores the correlation between them, and this does not summarize the variability of
the multivariate data into a single index.

• The known multivariate extensions of the CV are less considered in the literature. Perhaps
it is due to the fact that generalizing the univariate CV to the multivariate setting is not
straightforward, and the multivariate CV’s do not generally measure the same quantity,
when the number of variables is greater than one. Nevertheless, they all reduce to the CV
in the univariate case.
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Multivariate coefficient of variation

• Let X = (X1, . . . ,Xp)> be p-dimensional random vector with mean vector u 6= 0p and
covariance matrix Σ.

• The multivariate coefficients of variation (MCV) by Reyment (1960), Van Valen (1974),
Voinov and Nikulin (1996, p. 68) and Albert and Zhang (2010) are:

MCVR =

√
(det Σ)1/p

u>u , MCVVV =

√
trΣ
u>u , MCVVN =

√
1

u>Σ−1u
, MCVAZ =

√
u>Σu
(u>u)2 ,

respectively.
• The MCVR and MCVVV are based on the generalized variance det Σ and the total variance

trΣ, respectively. In the MCVVN, the Mahalanobis distance u>Σ−1u appears to be a
natural extension of the CV. Finally, the MCVAZ is derived based on a matrix generalizing
the square of the CV.
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Functional multivariate coefficient of variation

• We have:

MCVAZ =

√
Var(u>∗ X)
‖u‖ , (1)

where u∗ = u/‖u‖, i.e., MCVAZ is the univariate coefficient of variation for u>∗ X.
• Let X(t) = (X1(t), . . . ,Xp(t))>, t ∈ [a, b], a, b ∈ R be p-dimensional random process with
mean function µ(t) = (µ1(t), . . . , µp(t))> 6= 0p. We also assume that X(t), t ∈ [a, b]
belongs to the Hilbert space Lp

2 [a, b] of p-dimensional vectors of square integrable functions
on [a, b]. Let 〈·, ·〉 and ‖ · ‖ denote the inner product and the norm in Lp

2 [a, b].

Definition 1
The functional multivariate coefficient of variation for X(t), t ∈ [a, b] is defined as follows
(µ∗(t) = µ(t)/‖µ‖, t ∈ [a, b]):

FMCV =
√

Var(〈µ∗,X〉)
‖µ‖

. (2)
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Functional multivariate coefficient of variation

Theorem 1
If Xi(t), t ∈ [a, b], i = 1, . . . , p, are square integrable, i.e.,

E‖Xi‖2 = E
∫ b

a
X 2

i (t) dt <∞,

then
Var(〈µ∗,X〉)

exists. Furthermore, the FMCV defined in (2) is the CV of the random variable

〈µ∗,X〉.
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Functional multivariate coefficient of variation

• Let X(t) belong to a finite dimensional subspace Lp
2 [a, b] of Lp

2 [a, b], where the components
of X(t) can be represented by a finite number of basis functions, i.e.,

Xk(t) =
Bk∑
l=1

αklϕkl(t), (3)

where k = 1, . . . , p, t ∈ [a, b], Bk ∈ N, αkl are random variables with finite variance and
{ϕkl}∞l=1, k = 1, . . . , p are bases in the space L12[a, b]. The equations (3) can be expressed
in the following matrix notation:

X(t) = Φ(t)α, (4)

where
Φ(t) = diag

(
ϕ>1 (t), . . . ,ϕ>p (t)

)
is the block diagonal matrix of ϕ>k (t) = (ϕk1(t), . . . , ϕkBk (t)), k = 1, . . . , p and α =
(α11, . . . , α1B1 , . . . , αp1, . . . , αpBp )>.
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Functional multivariate coefficient of variation

•

FMCV =

√√√√Var
(

a>JΦα
‖J1/2

Φ a‖

)

‖J1/2
Φ a‖

=

√√√√a>JΦΣαJΦa
(a>JΦa)2 , (5)

where a = E(α), Σα = Cov(α) and JΦ = diag(Jϕ1
, . . . , Jϕp

) and Jϕk
=
∫ b

a ϕk(t)ϕ>k (t) dt
is the Bk × Bk cross product matrix corresponding to the basis {ϕkl}∞l=1, k = 1, . . . , p.

Theorem 2
Under the above assumptions and notation, the functional multivariate coefficient of variation for
the random process X(t), t ∈ [a, b], is the multivariate coefficient of variation of Albert-Zhang
type for random vector J1/2

Φ α, if the matrix J1/2
Φ exists.

• Although the FMCV is defined for univariate and multivariate functional data, we note that
even when p = 1, the FMCV reduces to the MCVAZ (no to the CV), since B1 > 1 usually.

Mirosław Krzyśko and Łukasz Smaga Multivariate coefficient of variation for functional data International Biometrical Colloquium 8 / 19



Estimation

• In practice, we have to estimate the unknown vector α in (4) as well as its parameters a
and Σα appearing in the FMCV given in (5).

• Let x1(t), . . . , xn(t), t ∈ [a, b] be a random sample containing realizations of the process
X(t). These observations are represented similarly as in (4), i.e.,

xi(t) = Φ(t)αi ,

where t ∈ [a, b] and i = 1, . . . , n.
• Then, the vectors αi , i = 1, . . . , n can be estimated by the least squares method or the
roughness penalty approach.

• The expansion lengths Bk in (3) can be selected deterministically or by using information
criteria as the Akaike and Bayesian information criteria.
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Estimation

• Using the estimators of αi , say α̂i , i = 1, . . . , n, we can estimate the mean vector a and
the covariance matrix Σα.

• The classical estimators are the sample mean and the sample covariance matrix, i.e.,

â = 1
n

n∑
i=1
α̂i , Σ̂α = 1

n

n∑
i=1

(α̂i − â)(α̂i − â)>. (6)

• However, these estimators may break down, when the data contain outliers. Thus, many
authors recommend the use of robust estimators of location and scatter in the presence of
outlying observations.

• Similarly to Aerts et al. (2015), we will mainly use the two commonly used ones, i.e., the
minimum covariance determinant (MCD) estimator and the S-estimator.
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Estimation

• For a given breakdown point α, the MCD estimator is based on a subset of {α̂1, . . . , α̂n} of
size h = bn(1−α)c minimizing the generalized variance (i.e., the determinant of covariance
matrix) among all possible subsets of size h. Then, the MCD estimators of a and Σα are
the sample mean and the sample covariance matrix (multiplied by a consistency factor)
computed from this subset.

• The location and scatter S-estimators are the vector an and the positive definite symmetric
matrix Σn which minimizes det(Σn) subject to

1
n

n∑
i=1

ρ

(√
(α̂i − an)>Σ−1n (α̂i − an)

)
= b0,

where ρ : R → [0,∞) is a given non-decreasing and symmetric function (e.g., Tukey’s
biweight) and b0 a constant needed to ensure consistency of the estimator.

• The (classical and robust) estimators of the FMCV are obtained by substituting the para-
meters a and Σα in (5) by their estimators â and Σ̂α.
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Simulation studies

• The functional sample x1(t), . . . , xn(t) of size n = 100 contains realizations of X(t), t ∈
[0, 1] with p = 5. These observations are generated as follows:

xi(tj) = Φ(tj)αi + εij ,

where i = 1, . . . , n, tj , j = 1, . . . , 50 are equally spaced design time points in [0, 1], the
matrix Φ(t) contains basis functions with Bk = 5, k = 1, . . . , p, αi are 5p-dimensional
random vectors, and εij = (εij1, . . . , εijp)> are the measurement errors such that εijk ∼
N(0, 0.025rik) and rik is the range of the k-th row of (Φ(t1)αi . . .Φ(t50)αi) , k = 1, . . . , p.
We use the Fourier and B-spline bases.

• The vectors αi , i = 1, . . . , n were generated from multivariate normal or t5- distributions
with mean a and covariance matrix Σα. Similarly to Aerts et al. (2015), we set a =
a1 := ae1 or a = a2 := (a/(5p)1/2)15p and Σα = (1 − ρ)I5p + ρ15p1>5p, where a is
chosen to get a given value of the FMCV, e1 = (1, 0, . . . , 0)> and ρ = 0, 0.5, 0.8. We set
FMCV = 0.1, 0.5, 0.9. Moreover, to obtain uncontaminated and contaminated functional
data, ε% of the observations are generated with 10Σα, where ε = 0, 10, 20, 30, 40, 50.
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Simulation studies
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Exemplary realizations of the first functional variables of simulated data with 10% of outlying
observations. The uncontaminated (resp. contaminated) data are depicted in gray (resp. black).
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Simulation studies - mean squared error

class. MCD S class. MCD S class. MCD S
ε FMCV = 0.1 FMCV = 0.5 FMCV = 0.9

F 0 0.0001 0.0002 0.0001 0.0209 0.0314 0.0212 0.1197 0.1654 0.1216
10 0.0019 0.0002 0.0002 0.1278 0.0347 0.0304 0.6283 0.1763 0.1662
20 0.0053 0.0002 0.0006 0.2919 0.0368 0.0519 1.1743 0.1909 0.2820
30 0.0095 0.0003 0.0019 0.4902 0.0412 0.1177 1.7589 0.2138 0.5742
40 0.0147 0.0011 0.0069 0.7307 0.0936 0.3261 2.3889 0.4412 1.4175
50 0.0204 0.0065 0.0140 0.9976 0.3683 0.6583 2.9514 1.3361 2.5026

B 0 0.0002 0.0004 0.0002 0.0433 0.0616 0.0441 0.2508 0.3492 0.2533
10 0.0023 0.0004 0.0003 0.2143 0.0644 0.0582 1.0780 0.3563 0.3268
20 0.0060 0.0004 0.0007 0.4704 0.0687 0.0882 2.0930 0.3842 0.4986
30 0.0109 0.0005 0.0022 0.7978 0.0717 0.1672 3.2243 0.3956 0.9228
40 0.0166 0.0013 0.0074 1.1598 0.1435 0.4648 4.3543 0.7577 2.2992
50 0.0227 0.0078 0.0153 1.5075 0.6046 0.9543 5.3330 2.3050 4.1944

• MSE’s are usually similar for different bases, but greater differences can appear for greater
FMCV. Moreover, MSE for the B-spline basis is often greater than for the Fourier basis.
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Application to ECG data

• We consider the ECG data set originated from Olszewski (2001).
• During each of 200 heartbeats, two electrodes were used to measure the ECG. For one
heartbeat and one electrode, the ECG was measured in 152 design time points, and the
resulting values of ECG form a curve, which can be treated as discrete functional observa-
tion.

• We have 200 two-dimensional discrete functional data observed in 152 design time points
(n = 200, p = 2, mi = 152, i = 1, . . . , n).

• The heartbeats were assigned to normal or abnormal group.
• Abnormal heartbeats are representative of a cardiac pathology known as supraventricular
premature beat.

• The normal and abnormal groups consist of 133 and 67 functional observations, respectively.
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Application to ECG data
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Application to ECG data

• The ECG database was used to discriminate between normal and abnormal heartbeats
(Olszewski, 2001).

• For illustrative purposes, we show that this has also sense from variability point of view.
To do this, we compute the FMCV for both normal and abnormal heartbeats separately.

• The basis functions representation of the data was obtained by using the Fourier and B-
spline bases and B1 = B2 = 5, 7, 9, 11, 13, 15, if it was possible.

• To estimate the FMCV, we used the same estimators as in simulation experiments, i.e., the
classical, MCD and S estimators, as well as the the pairwise estimator (OGK).

• The standard errors (SE) were obtained by the bootstrap method, based on 1000 bootstrap
samples.
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Application to ECG data
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